1
|
Lin S, Zhang Y, Guo D, Song C, Guo J. Polymer-Stabilized Liquid Crystal Films Containing Dithienyldicyanoethene-Based Chiral Photoswitch: Multi-Modulation for Environment-Adaptative Smart Windows. Chemistry 2023; 29:e202300993. [PMID: 37154210 DOI: 10.1002/chem.202300993] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
A polymer-stabilized liquid crystal (PSLC)-based environment-adaptative smart window with multi-modulations is demonstrated. This PSLC system contains a right-handed dithienyldicyanoethene-based chiral photoswitch and a chiral dopant, S811, with opposite handedness, of which the reversible cis-trans photoisomerization of the switch can drive self-shading of the smart window under UV light stimulus because of the transition from nematic phase to cholesteric one. With the assistance of solar heat, the opacity of the smart window can be deepened because the heat promotes the isomerization conversion rate of the switch. This switch has no thermal relaxation at room temperature, therefore, the smart window exhibits dual stabilization: transparent state (cis-isomer) and opaque state (trans-isomer). Moreover, the incident intensity of sunlight can be regulated by an electric field, which allows the smart window to adapt to some specific situations. Such an energy-saving device can be used in buildings and vehicles to control indoor temperature and adapt to the required ambiance.
Collapse
Affiliation(s)
- Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiyu Zhang
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dekang Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chunfeng Song
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Lin S, Zeng S, Li Z, Fan Q, Guo J. Turn-On Mode Circularly Polarized Luminescence in Self-Organized Cholesteric Superstructure for Active Photonic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30362-30370. [PMID: 35758230 DOI: 10.1021/acsami.2c05678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing circularly polarized luminescence (CPL)-active materials with a large luminescence dissymmetry factor (glum) or stimulus responses has evoked a lot of interest in the past few years; however, the light-controllable "on/off" CPL still remains a challenge. Here, a novel diarylethene-based chiral fluorescent photoswitch featuring "turn-on" CPL characteristic is developed, designated as (S,S)-switch 6, which can undergo reversible photocyclization/cycloreversion upon irradiation with UV and visible light. (S,S)-Switch 6 shows completely reversible "off-on-off"-responsive CPL behavior in solution. By doping (S,S)-switch 6 into nematic liquid crystals (LCs), the consequent luminescent cholesteric LCs (CLCs) exhibit a larger glum value enhanced 2 orders of magnitude when irradiated with UV light, which can be attributed to the highly ordered helical arrangement of CLCs. The potentials of this turn-on type CPL material for anticounterfeiting and information encryption are illustrated. Furthermore, the visualization of circularly polarized (CP) fluorescent patterns can be successfully achieved by constructing the double-layer CPL system consisting of a CP luminescent layer and a polymer cholesteric reflective layer. The proposed concept establishes a light-controlled off-on-off CPL platform that is of tremendous potential for applications in multi-informational data storage and encryption devices.
Collapse
Affiliation(s)
- Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuangshuang Zeng
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyuan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingyan Fan
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Chen X, Zhang S, Chen X, Li Q. Tunable Circularly Polarized Luminescent Supramolecular Systems: Approaches and Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
4
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
He Y, Zhang S, Bisoyi HK, Qiao J, Chen H, Gao J, Guo J, Li Q. Irradiation‐Wavelength Directing Circularly Polarized Luminescence in Self‐Organized Helical Superstructures Enabled by Hydrogen‐Bonded Chiral Fluorescent Molecular Switches. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanrong He
- Key Laboratory of Carbon Fibers and Functional Polymers Ministry of Education College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shu Zhang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent Ohio 44242 USA
| | - Jinghui Qiao
- Key Laboratory of Carbon Fibers and Functional Polymers Ministry of Education College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hong Chen
- Key Laboratory of Carbon Fibers and Functional Polymers Ministry of Education College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - JingJing Gao
- Key Laboratory of Carbon Fibers and Functional Polymers Ministry of Education College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers Ministry of Education College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Quan Li
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent Ohio 44242 USA
| |
Collapse
|
6
|
He Y, Zhang S, Bisoyi HK, Qiao J, Chen H, Gao J, Guo J, Li Q. Irradiation-Wavelength Directing Circularly Polarized Luminescence in Self-Organized Helical Superstructures Enabled by Hydrogen-Bonded Chiral Fluorescent Molecular Switches. Angew Chem Int Ed Engl 2021; 60:27158-27163. [PMID: 34549501 DOI: 10.1002/anie.202111344] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/31/2022]
Abstract
Two light-driven chiral fluorescent molecular switches, (R,S,R)-switch 1 and (R,S,R)-switch 2, are prepared by means of hydrogen-bonded (H-bonded) assembly of a photoresponsive (S) chiral fluorescent molecule, respectively with a cyano substitution at different positions as an H-bond acceptor and an opposite (R) chiral molecule as an H-bond donor. The resulting two switches exhibit tunable and reversible Z/E photoisomerization irradiated with 450 nm blue and 365 nm UV light. When doped into an achiral liquid crystal, both switches are found to be able to form a CPL tunable luminescent helical superstructure. In contrast to the tunable CPL characteristics of the system incorporating switch 2, exposure of the system incorporating switch 1 to 365 nm and 450 nm radiation can lead to controllable different photostationary CPL behavior, including switching-off and polarization inversion. In addition, optical information coding is demonstrated using the system containing switch 1.
Collapse
Affiliation(s)
- Yanrong He
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shu Zhang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio, 44242, USA
| | - Jinghui Qiao
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Chen
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - JingJing Gao
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.,Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio, 44242, USA
| |
Collapse
|
7
|
Juan A, Lin S, He Y, Fan Q, Guo J. Near-infrared light-induced photoisomerization and photodissociation of a chiral fluorescent photoswitch in cholesteric liquid crystals assisted by upconversion nanoparticles. SOFT MATTER 2021; 17:1404-1408. [PMID: 33325967 DOI: 10.1039/d0sm02109a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Upconversion-luminescence-induced reflective color switching and fluorescence tuning of a cholesteric liquid crystal (CLC) cells were investigated. The CLC system was constructed by co-doping a chiral fluorescence photoswitch, switch 5, and upconversion nanoparticles (UCNPs) into nematic LC media. Under irradiation with 980 nm NIR light, the UCNPs emit both 450 nm blue light and 365 nm UV light to induce the simultaneous Z-to-E and E-to-Z photoisomerization of switch 5. This continuous rotation-inversion movement further leads to an irreversible photoisomerization and photodissociation of dicyanodistyrylthiophene moieties in switch 5. As a result, the reflective color of the CLC cell changed from blue to red and the fluorescence intensity decreased as well when exposed to 980 nm NIR light. Finally, optically written reflective-photoluminescent dual mode CLC cells were further demonstrated.
Collapse
Affiliation(s)
- Ao Juan
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yanrong He
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qingyan Fan
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Juan A, Sun H, Qiao J, Guo J. Near-infrared light-controlled circularly polarized luminescence of self-organized emissive helical superstructures assisted by upconversion nanoparticles. Chem Commun (Camb) 2020; 56:13649-13652. [DOI: 10.1039/d0cc05910b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reversible switching of circularly polarized luminescence in a self-organized emissive helical superstructure using 980 nm NIR excitation light with different power intensities is reported for the first time.
Collapse
Affiliation(s)
- Ao Juan
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hao Sun
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jinghui Qiao
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
9
|
Li J, Bisoyi HK, Lin S, Guo J, Li Q. 1,2-Dithienyldicyanoethene-Based, Visible-Light-Driven, Chiral Fluorescent Molecular Switch: Rewritable Multimodal Photonic Devices. Angew Chem Int Ed Engl 2019; 58:16052-16056. [PMID: 31487106 DOI: 10.1002/anie.201908832] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Reported here is the first example of a 1,2-dithienyldicyanoethene-based visible-light-driven chiral fluorescent molecular switch that exhibits reversible trans to cis photoisomerization. The trans form in solution almost completely transforms into the cis form, accompanied by a 10-fold decrease in its fluorescence intensity within 60 seconds when exposed to green light (520 nm). The reverse isomerization proceeds upon irradiation with blue light (405 nm). When doped into commercially available achiral liquid crystal hosts, this molecular switch efficiently induces luminescent helical superstructures, that is, a cholesteric phase. The intensity of the circularly polarized fluorescence as well as the selective reflection wavelength of the induced cholesteric phases can be reversibly tuned using visible light of two different wavelengths. Optically rewritable photonic devices using cholesteric films containing this molecular switch are described.
Collapse
Affiliation(s)
- Juntao Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
10
|
Li J, Bisoyi HK, Lin S, Guo J, Li Q. 1,2‐Dithienyldicyanoethene‐Based, Visible‐Light‐Driven, Chiral Fluorescent Molecular Switch: Rewritable Multimodal Photonic Devices. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908832] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juntao Li
- Key Laboratory of Carbon Fibers and Functional PolymersMinistry of Education, and College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary ProgramKent State University Kent OH 44242 USA
| | - Siyang Lin
- Key Laboratory of Carbon Fibers and Functional PolymersMinistry of Education, and College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional PolymersMinistry of Education, and College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary ProgramKent State University Kent OH 44242 USA
| |
Collapse
|
11
|
Qiao J, Lin S, Li J, Tian J, Guo J. Reversible chirality inversion of circularly polarized luminescence in a photo-invertible helical cholesteric superstructure. Chem Commun (Camb) 2019; 55:14590-14593. [DOI: 10.1039/c9cc08090b] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first example of photo-driven reversible chirality inversion of circularly polarized luminescence in a helical cholesteric superstructure is reported.
Collapse
Affiliation(s)
- Jinghui Qiao
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Juntao Li
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiajun Tian
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|