1
|
Zinovjev K, Curutchet C. Improved Description of Environment and Vibronic Effects with Electrostatically Embedded ML Potentials. J Phys Chem Lett 2025; 16:774-781. [PMID: 39804789 DOI: 10.1021/acs.jpclett.4c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Incorporation of environment and vibronic effects in simulations of optical spectra and excited state dynamics is commonly done by combining molecular dynamics with excited state calculations, which allows to estimate the spectral density describing the frequency-dependent system-bath coupling strength. The need for efficient sampling, however, usually leads to the adoption of classical force fields despite well-known inaccuracies due to the mismatch with the excited state method. Here, we present a multiscale strategy that overcomes this limitation by combining EMLE simulations based on electrostatically embedded ML potentials with the QM/MMPol polarizable embedding model to compute the excited states and spectral density of 3-methyl-indole, the chromophoric moiety of tryptophan that mediates a variety of important biological functions, in the gas phase, in water solution, and in the human serum albumin protein. Our protocol provides highly accurate results that faithfully reproduce their ab initio QM/MM counterparts, thus paving the way for accurate investigations on the interrelation between the time scales of biological motion and the photophysics of tryptophan and other biosystems.
Collapse
Affiliation(s)
- Kirill Zinovjev
- Departamento de Química Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
2
|
Norris AC, Oberg C, Spangler LC, Scholes GD, Schlau-Cohen GS. Discovery of Multiple Light-Harvesting States of the Photosynthetic Protein PE545. J Am Chem Soc 2024; 146:27373-27381. [PMID: 39325132 DOI: 10.1021/jacs.4c06307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cryptophytes are photosynthetic microalga that flourish in a remarkable diversity of natural environments by using pigment-containing proteins with absorption maxima tuned to each ecological niche. While this diversity in the absorption has been well established, the subsequent photophysics is highly sensitive to the local protein environment and so may exhibit similar variation. Thermal fluctuations of the protein conformation are expected to introduce photophysical heterogeneity of the pigments that may have evolved important functional properties in a manner similar to that of the absorption. However, such heterogeneity is averaged out in ensemble measurements and, therefore, has not yet been probed. Here, we report single-molecule measurements of phycoerythrin 545 (PE545), the prototypical cryptophyte antenna protein, in its native dimeric form. A conformational ensemble was resolved consisting of distinct photophysical states with different light-harvesting properties. Proteins that did not quench, partially quenched, or fully quenched absorbed light were observed. Light intensity increased the quenched-state population of the dimer, potentially as a mechanism to deal with the extreme light intensities found in aqueous environments. Cross-linking, which mimics local interactions, introduces this light-dependent functionality while also suppressing other conformational dynamics. The cellular organization can, therefore, actively modulate the protein conformation and dynamics, selecting for distinct levels of light harvesting. Thus, the complex conformational equilibrium provides an additional mechanism for cryptophytes and likely other photosynthetic organisms to optimize solar energy capture and conversion.
Collapse
Affiliation(s)
- Audrey C Norris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Catrina Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leah C Spangler
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Cupellini L, Gwizdala M, Krüger TPJ. Energetic Landscape and Terminal Emitters of Phycobilisome Cores from Quantum Chemical Modeling. J Phys Chem Lett 2024; 15:9746-9756. [PMID: 39288324 DOI: 10.1021/acs.jpclett.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Phycobilisomes (PBs) are giant antenna supercomplexes of cyanobacteria that use phycobilin pigments to capture sunlight and transfer the collected energy to membrane-bound photosystems. In the PB core, phycobilins are bound to particular allophycocyanin (APC) proteins. Some phycobilins are thought to be terminal emitters (TEs) with red-shifted fluorescence. However, the precise identification of TEs is still under debate. In this work, we employ multiscale quantum-mechanical calculations to disentangle the excitation energy landscape of PB cores. Using the recent atomistic PB structures from Synechoccoccus PCC 7002 and Synechocystis PCC 6803, we compute the spectral properties of different APC trimers and assign the low-energy pigments. We show that the excitation energy of APC phycobilins is determined by geometric and electrostatic factors and is tuned by the specific protein-protein interactions within the core. Our findings challenge the simple picture of a few red-shifted bilins in the PB core and instead suggest that the red-shifts are established by the entire TE-containing APC trimers. Our work provides a theoretical microscopic basis for the interpretation of energy migration and time-resolved spectroscopy in phycobilisomes.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- National Institute of Theoretical and Computational Sciences (NITheCS), https://nithecs.ac.za/
| |
Collapse
|
4
|
Garric S, Ratin M, Marie D, Foulon V, Probert I, Rodriguez F, Six C. Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis. Curr Biol 2024; 34:3064-3076.e5. [PMID: 38936366 DOI: 10.1016/j.cub.2024.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated β subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.
Collapse
Affiliation(s)
- Sarah Garric
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Morgane Ratin
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Dominique Marie
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Valentin Foulon
- Centre National de la Recherche Scientifique, UMR 6285 Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance (Lab-STICC), Technopole Brest-Iroise, Brest 29238, France
| | - Ian Probert
- Sorbonne Université, FR 2424, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Francisco Rodriguez
- Centro oceanográfico de Vigo (IEO-CSIC), Subida a Radio Faro 50, Vigo 36390, Spain
| | - Christophe Six
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France.
| |
Collapse
|
5
|
Merritt KA, Richardson TL. Variability in spectral absorption within cryptophyte phycobiliprotein types. JOURNAL OF PHYCOLOGY 2024; 60:528-540. [PMID: 38456338 DOI: 10.1111/jpy.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Cryptophytes are known to vary widely in coloration among species. These differences in color arise primarily from the presence of phycobiliprotein accessory pigments. There are nine defined cryptophyte phycobiliprotein (Cr-PBP) types, named for their wavelength of maximal absorbance. Because Cr-PBP type has traditionally been regarded as a categorical trait, there is a paucity of information about how spectral absorption characteristics of Cr-PBPs vary among species. We investigated variability in primary and secondary peak absorbance wavelengths and full width at half max (FWHM) values of spectra of Cr-PBPs extracted from 75 cryptophyte strains (55 species) grown under full spectrum irradiance. We show that there may be substantial differences in spectral shapes within Cr-PBP types, with Cr-Phycoerythrin (Cr-PE) 545 showing the greatest variability with two, possibly three, subtypes, while Cr-PE 566 spectra were the least variable, with only ±1 nm of variance around the mean absorbance maximum of 565 nm. We provide additional criteria for classification in cases where the wavelength of maximum absorbance alone is not definitive. Variations in spectral characteristics among strains containing the same presumed Cr-PBP type may indicate differing chromophore composition and/or the presence of more than one Cr-PBP in a single cryptophyte species.
Collapse
Affiliation(s)
- Kristiaän A Merritt
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- School of the Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
6
|
Ozaydin B, Curutchet C. Unraveling the role of thermal fluctuations on the exciton structure of the cryptophyte PC612 and PC645 photosynthetic antenna complexes. Front Mol Biosci 2023; 10:1268278. [PMID: 37790875 PMCID: PMC10544999 DOI: 10.3389/fmolb.2023.1268278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Protein scaffolds play a crucial role in tuning the light harvesting properties of photosynthetic pigment-protein complexes, influencing pigment-protein and pigment-pigment excitonic interactions. Here, we investigate the influence of thermal dynamic effects on the protein tuning mechanisms of phycocyanin PC645 and PC612 antenna complexes of cryptophyte algae, featuring closed or open quaternary structures. We employ a dual molecular dynamics (MD) strategy that combines extensive classical MD simulations with multiple short Born-Oppenheimer quantum/molecular mechanical (QM/MM) simulations to accurately account for both static and dynamic disorder effects. Additionally, we compare the results with an alternative protocol based on multiple QM/MM geometry optimizations of the pigments. Subsequently, we employ polarizable QM/MM calculations using time-dependent density functional theory (TD-DFT) to compute the excited states, and we adopt the full cumulant expansion (FCE) formalism to describe the absorption and circular dichroism spectra. Our findings indicate that thermal effects have only minor impacts on the energy ladder in PC612, despite its remarkable flexibility owing to an open quaternary structure. In striking contrast, thermal effects significantly influence the properties of PC645 due to the absence of a hydrogen bond controlling the twist of ring D in PCB β82 bilins, as well as the larger impact of fluctuations on the excited states of MBV pigments, which possess a higher conjugation length compared to other bilin types. Overall, the dual MD protocol combined with the FCE formalism yields excellent spectral properties for PC612 and PC645, and the resultant excitonic Hamiltonians pave the way for future investigations concerning the implications of open and closed quaternary structures on phycocyanin light harvesting properties.
Collapse
Affiliation(s)
- Beste Ozaydin
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
7
|
Curti M, Maffeis V, Teixeira Alves Duarte LG, Shareef S, Hallado LX, Curutchet C, Romero E. Engineering excitonically coupled dimers in an artificial protein for light harvesting via computational modeling. Protein Sci 2023; 32:e4579. [PMID: 36715022 PMCID: PMC9951196 DOI: 10.1002/pro.4579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
In photosynthesis, pigment-protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalization over multiple pigments ("excitons") and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realizing efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimized via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modeling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore-protein complexes with advanced functionalities.
Collapse
Affiliation(s)
- Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRSUniversité Lyon 1LyonFrance
| | | | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
| | - Luisa Xiomara Hallado
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'AlimentacióUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB)BarcelonaSpain
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
| |
Collapse
|
8
|
Michie KA, Harrop SJ, Rathbone HW, Wilk KE, Teng CY, Hoef‐Emden K, Hiller RG, Green BR, Curmi PMG. Molecular structures reveal the origin of spectral variation in cryptophyte light harvesting antenna proteins. Protein Sci 2023; 32:e4586. [PMID: 36721353 PMCID: PMC9951199 DOI: 10.1002/pro.4586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In addition to their membrane-bound chlorophyll a/c light-harvesting antenna, the cryptophyte algae have evolved a unique phycobiliprotein antenna system located in the thylakoid lumen. The basic unit of this antenna consists of two copies of an αβ protomer where the α and β subunits scaffold different combinations of a limited number of linear tetrapyrrole chromophores. While the β subunit is highly conserved, encoded by a single plastid gene, the nuclear-encoded α subunits have evolved diversified multigene families. It is still unclear how this sequence diversity results in the spectral diversity of the mature proteins. By careful examination of three newly determined crystal structures in comparison with three previously obtained, we show how the α subunit amino acid sequences control chromophore conformations and hence spectral properties even when the chromophores are identical. Previously we have shown that α subunits control the quaternary structure of the mature αβ.αβ complex (either open or closed), however, each species appeared to only harbor a single quaternary form. Here we show that species of the Hemiselmis genus contain expressed α subunit genes that encode both distinct quaternary structures. Finally, we have discovered a common single-copy gene (expressed into protein) consisting of tandem copies of a small α subunit that could potentially scaffold pairs of light harvesting units. Together, our results show how the diversity of the multigene α subunit family produces a range of mature cryptophyte antenna proteins with differing spectral properties, and the potential for minor forms that could contribute to acclimation to varying light regimes.
Collapse
Affiliation(s)
- Katharine A. Michie
- School of PhysicsThe University of New South WalesSydneyNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
- Mark Wainwright Analytical CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Stephen J. Harrop
- School of PhysicsThe University of New South WalesSydneyNew South WalesAustralia
- MX Beamlines, Australian SynchrotronClaytonVictoriaAustralia
| | - Harry W. Rathbone
- School of PhysicsThe University of New South WalesSydneyNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Krystyna E. Wilk
- School of PhysicsThe University of New South WalesSydneyNew South WalesAustralia
| | - Chang Ying Teng
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| | | | - Roger G. Hiller
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | | | - Paul M. G. Curmi
- School of PhysicsThe University of New South WalesSydneyNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
9
|
Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis. Int J Mol Sci 2023; 24:ijms24032290. [PMID: 36768613 PMCID: PMC9916406 DOI: 10.3390/ijms24032290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out to be arranged in the same way. Pigment-protein complexes of photosystem I (PS I) and photosystem II (PS II) are characterized by uniform structures, while the light-harvesting antennae have undergone a series of changes. The phycobilisome (PBS) antenna present in cyanobacteria was replaced by Chl a/b- or Chl a/c-containing pigment-protein complexes in most groups of photosynthetics. In the form of PBS or phycobiliprotein aggregates, it was inherited by members of Cyanophyta, Cryptophyta, red algae, and photosynthetic amoebae. Supramolecular organization and architectural modifications of phycobiliprotein antennae in various algal phyla in line with the endosymbiotic theory of chloroplast origin are the subject of this review.
Collapse
|
10
|
Cignoni E, Cupellini L, Mennucci B. A fast method for electronic couplings in embedded multichromophoric systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:304004. [PMID: 35552268 DOI: 10.1088/1361-648x/ac6f3c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Electronic couplings are key to understanding exciton delocalization and transport in natural and artificial light harvesting processes. We develop a method to compute couplings in multichromophoric aggregates embedded in complex environments without running expensive quantum chemical calculations. We use a transition charge approximation to represent the quantum mechanical transition densities of the chromophores and an atomistic and polarizable classical model to describe the environment atoms. We extend our framework to estimate transition charges directly from the chromophore geometry, i.e., bypassing completely the quantum mechanical calculations using a regression approach. The method allows to rapidly compute accurate couplings for a large number of geometries along molecular dynamics trajectories.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
11
|
Cignoni E, Slama V, Cupellini L, Mennucci B. The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. J Chem Phys 2022; 156:120901. [DOI: 10.1063/5.0086275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of light-harvesting complexes is determined by a complex network of dynamic interactions among all the different components: the aggregate of pigments, the protein, and the surrounding environment. Complete and reliable predictions on these types of composite systems can be only achieved with an atomistic description. In the last few decades, there have been important advances in the atomistic modeling of light-harvesting complexes. These advances have involved both the completeness of the physical models and the accuracy and effectiveness of the computational protocols. In this Perspective, we present an overview of the main theoretical and computational breakthroughs attained so far in the field, with particular focus on the important role played by the protein and its dynamics. We then discuss the open problems in their accurate modeling that still need to be addressed. To illustrate an effective computational workflow for the modeling of light harvesting complexes, we take as an example the plant antenna complex CP29 and its H111N mutant.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Slama
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
12
|
Spangler LC, Yu M, Jeffrey PD, Scholes GD. Controllable Phycobilin Modification: An Alternative Photoacclimation Response in Cryptophyte Algae. ACS CENTRAL SCIENCE 2022; 8:340-350. [PMID: 35350600 PMCID: PMC8949638 DOI: 10.1021/acscentsci.1c01209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/29/2023]
Abstract
Cryptophyte algae are well-known for their ability to survive under low light conditions using their auxiliary light harvesting antennas, phycobiliproteins. Mainly acting to absorb light where chlorophyll cannot (500-650 nm), phycobiliproteins also play an instrumental role in helping cryptophyte algae respond to changes in light intensity through the process of photoacclimation. Until recently, photoacclimation in cryptophyte algae was only observed as a change in the cellular concentration of phycobiliproteins; however, an additional photoacclimation response was recently discovered that causes shifts in the phycobiliprotein absorbance peaks following growth under red, blue, or green light. Here, we reproduce this newly identified photoacclimation response in two species of cryptophyte algae and elucidate the origin of the response on the protein level. We compare isolated native and photoacclimated phycobiliproteins for these two species using spectroscopy and mass spectrometry, and we report the X-ray structures of each phycobiliprotein and the corresponding photoacclimated complex. We find that neither the protein sequences nor the protein structures are modified by photoacclimation. We conclude that cryptophyte algae change one chromophore in the phycobiliprotein β subunits in response to changes in the spectral quality of light. Ultrafast pump-probe spectroscopy shows that the energy transfer is weakly affected by photoacclimation.
Collapse
Affiliation(s)
- Leah C. Spangler
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mina Yu
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip D. Jeffrey
- Department
of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Cupellini L, Lipparini F, Cao J. Absorption and Circular Dichroism Spectra of Molecular Aggregates With the Full Cumulant Expansion. J Phys Chem B 2020; 124:8610-8617. [PMID: 32901476 PMCID: PMC7901647 DOI: 10.1021/acs.jpcb.0c05180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The exciton Hamiltonian of multichromophoric aggregates can be probed by spectroscopic
techniques such as linear absorption and circular dichroism. To compare calculated
Hamiltonians to experiments, a lineshape theory is needed, which takes into account the
coupling of the excitons with inter- and intramolecular vibrations. This coupling is
normally introduced in a perturbative way through the cumulant expansion formalism and
further approximated by assuming a Markovian exciton dynamics, for example with the
modified Redfield theory. Here, we present the implementation of the full cumulant
expansion (FCE) formalism (J. Chem.
Phys.142, 2015, 09410625747060) to
efficiently compute absorption and circular dichroism spectra of molecular aggregates
beyond the Markov approximation, without restrictions on the form of
exciton–phonon coupling. By employing the LH2 system of purple bacteria as a
challenging test case, we compare the FCE lineshapes with the Markovian lineshapes
obtained with the modified Redfield theory, showing that the latter presents a less
satisfying agreement with experiments. The FCE approach instead accurately describes the
lineshapes, especially in the vibronic sideband of the B800 peak. We envision that the
FCE approach will become a valuable tool for accurately comparing model exciton
Hamiltonians with optical spectroscopy experiments.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Pontes MS, Graciano DE, Antunes DR, Santos JS, Arruda GJ, Botero ER, Grillo R, Lima SM, Andrade LHC, Caires ARL, Santiago EF. In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122484. [PMID: 32302886 DOI: 10.1016/j.jhazmat.2020.122484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
This work has assessed the impact of copper oxide nanoparticles (CuONPs), designed via green route, toward photosynthetic apparatus on aquatic photoautotrophic organisms. In order to filling knowledge gaps, in vitro and in vivo assays were performed, using cyanobacterial phycocyanin (C-PC) from Arthrospira platensis and Lemna valdiviana plants (duckweed), respectively. Impairment in light energy transfer became evident in C-PC exposed to CuONPs, giving rise to an increase of light absorption and a suppression of fluorescence emission. Fourier transform infrared spectroscopy (FTIR) results showed that C-PC structures might be altered by the nanoparticles, also revealed that CuONPs preferably interacts with -NH functional groups. The data also revealed that CuONPs affected the chlorophyll a content in duckweed leaves. In addition, photosystem II (PSII) performance was significantly affected by CuONPs, negatively impacting the PSII photochemical network. In summary, the results point out that, even eco-friendly designed, CuONPs may negatively affect the photosynthetic process when accumulated by aquatic photoautotrophs.
Collapse
Affiliation(s)
- Montcharles S Pontes
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Daniela E Graciano
- Applied Optics Group, Faculty of Science and Technology, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Débora R Antunes
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Jaqueline S Santos
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Gilberto J Arruda
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Eriton R Botero
- Applied Optics Group, Faculty of Science and Technology, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Sandro M Lima
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Luís H C Andrade
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Anderson R L Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, 79070-900, Brazil; School of Life Science, University of Essex, Colchester, CO4 3SQ, Essex, UK
| | - Etenaldo F Santiago
- Natural Resources Program, Center for Natural Resources Studies (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, Mato Grosso do Sul, 79804-970, Brazil.
| |
Collapse
|
15
|
Macaluso V, Cupellini L, Salvadori G, Lipparini F, Mennucci B. Elucidating the role of structural fluctuations, and intermolecular and vibronic interactions in the spectroscopic response of a bacteriophytochrome. Phys Chem Chem Phys 2020; 22:8585-8594. [DOI: 10.1039/d0cp00372g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular dynamics and a multiscale polarizable QM/MM strategy allow reproducing absorption, circular dichroism, and resonance Raman spectra of a bacteriophytochrome.
Collapse
Affiliation(s)
- Veronica Macaluso
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Filippo Lipparini
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| |
Collapse
|
16
|
Cupellini L, Bondanza M, Nottoli M, Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148049. [PMID: 31386831 DOI: 10.1016/j.bbabio.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Light-harvesting is a crucial step of photosynthesis. Its mechanisms and related energetics have been revealed by a combination of experimental investigations and theoretical modeling. The success of theoretical modeling is largely due to the application of atomistic descriptions combining quantum chemistry, classical models and molecular dynamics techniques. Besides the important achievements obtained so far, a complete and quantitative understanding of how the many different light-harvesting complexes exploit their structural specificity is still missing. Moreover, many questions remain unanswered regarding the mechanisms through which light-harvesting is regulated in response to variable light conditions. Here we show that, in both fields, a major role will be played once more by atomistic descriptions, possibly generalized to tackle the numerous time and space scales on which the regulation takes place: going from the ultrafast electronic excitation of the multichromophoric aggregate, through the subsequent conformational changes in the embedding protein, up to the interaction between proteins.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy.
| |
Collapse
|