1
|
Li H, Lin C, Wu Y, Qiao X, Yang D, Dai Y, Sun Q, Ahamad T, Zhao Z, Ma D. Exciton dynamics of an aggregation-induced delayed fluorescence emitter in non-doped OLEDs and its application as host for high-efficiency red phosphorescent OLEDs. Phys Chem Chem Phys 2023; 25:26878-26884. [PMID: 37782517 DOI: 10.1039/d3cp03275b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Aggregation-induced delayed fluorescence (AIDF) materials have great potential in non-doped OLEDs due to their high photoluminescence (PL) quantum efficiency in film, high exciton utilization in the aggregated state and negligible efficiency roll-off at high luminance. However, their efficient mechanism in OLEDs is not yet well understood. Here, the exciton dynamics are used to investigate the electroluminescence (EL) mechanism of an AIDF emitter (4-(10H-phenoxazin-10-yl)phenyl)-(9-phenyl-9H-carbazol-3-yl)methanone (CP-BP-PXZ) in detail. It can be seen that the high efficiency and negligible efficiency roll-off in non-doped OLEDs based on CP-BP-PXZ as the emitter are ascribed to the effective reverse intersystem crossing (RISC) from high level triplet T2 to singlet S1 in the aggregated state. Furthermore, CP-BP-PXZ also exhibits excellent properties as a phosphor host due to its good AIDF properties. Thus, high-efficiency red phosphorescent OLEDs with low roll-off efficiency are successfully fabricated based on CP-BP-PXZ as the host. The maximum external quantum efficiency (EQEmax) reaches 23% and is maintained at 21% at a luminance of 1000 cd m-2.
Collapse
Affiliation(s)
- Hanlin Li
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Chengwei Lin
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yibing Wu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Xianfeng Qiao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yanfeng Dai
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Qian Sun
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhujin Zhao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Zhang XW, Chen XL, Lu CZ. High-Contrast Visualization Chemiluminescence Based on AIE-Active and Base-Sensitive Emitters. Molecules 2023; 28:molecules28093976. [PMID: 37175384 PMCID: PMC10180503 DOI: 10.3390/molecules28093976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Peroxyoxalate chemiluminescence (PO-CL) is one of the most popular cold light sources, yet the drawback of aggregation-caused quenching limits their use. Here, we report a new kind of efficient bifunctional emitter derived from salicylic acid, which not only exhibits typical aggregation-induced emission (AIE) character but also has the ability to catalyze the CL process under basic conditions based on base sensitivity. By taking advantage of these unique features, we successfully confine the CL process on the surface of solid bases and provide a high-contrast visualization of CL emission. This method allows most of the common basic salts like sodium carbonate to be invisible encryption information ink and PO-CL solution to be a decryption tool to visualize the hidden information. The current study opens up an appealing way for the development of multifunction CL emitters for information encryption and decryption applications.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
3
|
Song F, Ou X, Chou TY, Liu J, Gao H, Zhang R, Huang X, Zhao Z, Sun J, Chen S, Lam JWY, Tang BZ. Oxygen Quenching-Resistant Nanoaggregates with Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity. ACS NANO 2022; 16:6176-6184. [PMID: 35318852 DOI: 10.1021/acsnano.1c11661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microviscosity is a fundamental parameter in the biophysics of life science and governs numerous cellular processes. Thus, the development of real-time quantitative monitoring of microviscosity inside cells is important. The traditional probes for detecting microviscosity via time-resolved luminescence imaging (TRLI) are generally disturbed by autofluorescence or surrounding oxygen in cells. Herein, we developed loose packing nanoaggregates with aggregation-induced delayed fluorescence (FKP-POA and FKP-PTA) and free from the effect of oxygen and autofluorescence for viscosity mapping via TRLI. The feasibility of FKP-PTA nanoparticles (NPs) for microviscosity mapping through TRLI was demonstrated by monitoring the variation of microviscosity inside HepG2 cancer cells, which demonstrated a value change from 14.9 cP to 216.9 cP during the apoptosis. This indicates that FKP-PTA NP can be used as a probe for cellular microviscosity mapping to help people to understand the physiologically dynamic microenvironment. The present results are expected to promote the advancement of diagnostic and therapeutic methods to cope with related diseases.
Collapse
Affiliation(s)
- Fengyan Song
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Chemical Biology, School of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Tsu Yu Chou
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hui Gao
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolin Huang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
4
|
Gillett AJ, Tonnelé C, Londi G, Ricci G, Catherin M, Unson DML, Casanova D, Castet F, Olivier Y, Chen WM, Zaborova E, Evans EW, Drummond BH, Conaghan PJ, Cui LS, Greenham NC, Puttisong Y, Fages F, Beljonne D, Friend RH. Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors. Nat Commun 2021; 12:6640. [PMID: 34789719 PMCID: PMC8599618 DOI: 10.1038/s41467-021-26689-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
Engineering a low singlet-triplet energy gap (ΔEST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 × 105 cm-1) and a relatively large ΔEST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 μs), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a ~24 ns timescale and have an average electron-hole separation of ≥1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low ΔEST in organic DF emitters.
Collapse
Affiliation(s)
- Alexander J Gillett
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK.
| | - Claire Tonnelé
- Donostia International Physics Centre (DIPC), Donostia, Euskadi, Spain
| | - Giacomo Londi
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Gaetano Ricci
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, B-5000, Namur, Belgium
| | - Manon Catherin
- Aix Marseille Univ, CNRS, CINaM UMR 7325, AMUtech, Campus de Luminy, 13288, Marseille, France
| | - Darcy M L Unson
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK
| | - David Casanova
- Donostia International Physics Centre (DIPC), Donostia, Euskadi, Spain
| | - Frédéric Castet
- Institut des Sciences Moléculaires, Université de Bordeaux, 33405, Talence, France
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, B-5000, Namur, Belgium
| | - Weimin M Chen
- Department of Physics, Chemistry and Biology (IFM) Linköping University, Linköping, Sweden
| | - Elena Zaborova
- Aix Marseille Univ, CNRS, CINaM UMR 7325, AMUtech, Campus de Luminy, 13288, Marseille, France
| | - Emrys W Evans
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK
- Department of Chemistry, Swansea University, Singleton Park, Swansea, UK
| | - Bluebell H Drummond
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK
| | - Patrick J Conaghan
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Lin-Song Cui
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK
| | - Yuttapoom Puttisong
- Department of Physics, Chemistry and Biology (IFM) Linköping University, Linköping, Sweden.
| | - Frédéric Fages
- Aix Marseille Univ, CNRS, CINaM UMR 7325, AMUtech, Campus de Luminy, 13288, Marseille, France.
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium.
| | - Richard H Friend
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK.
| |
Collapse
|
5
|
Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices. Top Curr Chem (Cham) 2021; 379:16. [PMID: 33725239 DOI: 10.1007/s41061-021-00328-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022]
Abstract
Aggregation induced emission (AIE) luminogens (AIEgens) have great potential in the field of organic optoelectronic devices because of their highly efficient emission property in solid state. For example, high efficiency organic light-emitting diodes (OLEDs) based on AIEgens have been developed successfully. Some AIEgens also show good photovoltaic response properties for organic solar cells (OSCs) and organic photodetectors (OPDs), and lasing properties for optically pumping organic lasers (OLs). The review will cover the status and prospects of AIEgens in OLEDs, OLs, OSCs and OPDs. It is expected that AIEgens will become an important organic optoelectronic material system in the future.
Collapse
|
6
|
Xu Y, Gao X, Leng J, Fan J. Theoretical perspective on the luminescence mechanism of a hybridized local and charge transfer state emitter with aggregation induced emission: a QM/MM study. CrystEngComm 2021. [DOI: 10.1039/d1ce00223f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Relationship among basic molecular structures and intermolecular interactions as well as AIE–HLCT mechanisms are theoretically revealed.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Science
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Xingguo Gao
- School of Science
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Jiancai Leng
- School of Science
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology
- Institute of Materials and Clean Energy
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
| |
Collapse
|
7
|
Zhang H, Zhao Z, Turley AT, Wang L, McGonigal PR, Tu Y, Li Y, Wang Z, Kwok RTK, Lam JWY, Tang BZ. Aggregate Science: From Structures to Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001457. [PMID: 32734656 DOI: 10.1002/adma.202001457] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Molecular science entails the study of structures and properties of materials at the level of single molecules or small interacting complexes of molecules. Moving beyond single molecules and well-defined complexes, aggregates (i.e., irregular clusters of many molecules) serve as a particularly useful form of materials that often display modified or wholly new properties compared to their molecular components. Some unique structures and phenomena such as polymorphic aggregates, aggregation-induced symmetry breaking, and cluster excitons are only identified in aggregates, as a few examples of their exotic features. Here, by virtue of the flourishing research on aggregation-induced emission, the concept of "aggregate science" is put forward to fill the gaps between molecules and aggregates. Structures and properties on the aggregate scale are also systematically summarized. The structure-property relationships established for aggregates are expected to contribute to new materials and technological development. Ultimately, aggregate science may become an interdisciplinary research field and serves as a general platform for academic research.
Collapse
Affiliation(s)
- Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Andrew T Turley
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, China
| | - Paul R McGonigal
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Yujie Tu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, 510640, China
| |
Collapse
|
8
|
Liu D, Wei JY, Tian WW, Jiang W, Sun YM, Zhao Z, Tang BZ. Endowing TADF luminophors with AIE properties through adjusting flexible dendrons for highly efficient solution-processed nondoped OLEDs. Chem Sci 2020; 11:7194-7203. [PMID: 33033608 PMCID: PMC7499814 DOI: 10.1039/d0sc02194f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
The amalgamation of thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) properties, termed AIE-TADF, is a promising strategy to design novel robust luminescent materials. Herein, we transform 2,3,4,5,6-penta(9H-carbazol-9-yl)benzonitrile (5CzBN) from an ACQ molecule into an AIEgen by simply decorating the 5CzBN core with alkyl chain-linked spirobifluorene dendrons. By increasing the number of flexible dendrons, these materials can not only show obvious AIE-TADF characteristics and uniform film morphology, but can also exhibit better resistance to isopropyl alcohol, which are beneficial to fully solution-processed OLEDs. Notably, 5CzBN-PSP shows great device efficiency with an external quantum efficiency (EQE), current efficiency and power efficiency of 20.1%, 58.7 cd A-1 and 46.2 lm W-1, respectively and achieved record-breaking efficiency in solution-processed nondoped OLEDs based on AIE emitters. This work demonstrates a general approach to explore new efficient emitters by the marriage of AIE and TADF which could potentially improve their performance in various areas.
Collapse
Affiliation(s)
- Dan Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Jing Yi Wei
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Wen Wen Tian
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Wei Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Yue Ming Sun
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Zheng Zhao
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| |
Collapse
|