1
|
Song Y, Wu G, Zhang E, Feng G, Lei S, Wu L. Photoelectric Multi-Signal Output Sensor Based on Two-Dimensional Covalent Organic Polymer Film Modified by Novel Aggregation-Induced Emission Probes. BIOSENSORS 2024; 14:312. [PMID: 38920616 PMCID: PMC11202238 DOI: 10.3390/bios14060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Optical sensors, especially fluorescence sensors, have been widely used because of their advantages in sensing, such as the high sensitivity, good selectivity, no radiation source, and easy operation. Here, we report an example of fluorescence sensing based on two-dimensional (2D) covalent organic polymers and highlight that the material can achieve a fast response and multi-signal output. This 2DPTPAK+TAPB-based sensor can quickly detect aromatic hydrocarbons and Fe3+ by the fluorescence signal or electrical resistance signal.
Collapse
Affiliation(s)
- Yaru Song
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Guoling Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Enbing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
2
|
Yin H, Wu Y, Jiang Y, Wang M, Wang S. Synthesis of Cyclohepta[ b]indoles and Furo[3,4- b]carbazoles from Indoles, Tertiary Propargylic Alcohols, and Activated Alkynes. Org Lett 2023; 25:3078-3082. [PMID: 37083483 DOI: 10.1021/acs.orglett.3c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A robust metal-free and environmentally friendly approach to cyclohepta[b]indole and furo[3,4-b]carbazole frameworks via a three-component reaction from indoles, tertiary propargylic alcohols, and activated alkynes is described. A probable mechanism was proposed on the basis of the isolation and characterization of a key intermediate of the reaction. A gram-scale reaction and product derivatizations were also performed to demonstrate the practicality of the developed methodology.
Collapse
Affiliation(s)
- Haiting Yin
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Yunjun Wu
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Yifan Jiang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Meifang Wang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Shaoyin Wang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| |
Collapse
|
3
|
Yashwantrao G, Shetty P, Maleikal PJ, Badani P, Saha S. Dehydrative Substitution Reaction in Water for the Preparation of Unsymmetrically Substituted Triarylmethanes: Synthesis, Aggregation‐Enhanced Emission, and Mechanofluorochromism. Chempluschem 2022; 87:e202200150. [DOI: 10.1002/cplu.202200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Gauravi Yashwantrao
- ICT Mumbai: Institute of Chemical Technology Speciality Chemicals Technology INDIA
| | - Prapti Shetty
- Institute of Chemical Technology Speciality Chemicals Technology INDIA
| | | | - Purav Badani
- University of Mumbai - Kalina Campus Chemistry INDIA
| | - Satyajit Saha
- Institute of Chemical Technology, Mumbai Department of Dyestuff Technology Nathelal parekh Marg400019India 400019 Matunga, 2010 INDIA
| |
Collapse
|
4
|
Kshatriya R, Shelke P, Mali S, Yashwantrao G, Pratap A, Saha S. Synthesis and Evaluation of Anticancer Activity of Pyrazolone Appended Triarylmethanes (TRAMs). ChemistrySelect 2021. [DOI: 10.1002/slct.202101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rajpratap Kshatriya
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 40019 India
| | - Premchand Shelke
- Department of Oils and Oleochemicals Institute of Chemical Technology (ICT) Mumbai 40019 India
| | - Suraj Mali
- Department of Pharmaceutical Sciences Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - Gauravi Yashwantrao
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 40019 India
| | - Amit Pratap
- Department of Oils and Oleochemicals Institute of Chemical Technology (ICT) Mumbai 40019 India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 40019 India
| |
Collapse
|
5
|
Ghosh A, Seth SK, Ghosh A, Pattanayak P, Mallick A, Purkayastha P. A New Compound for Sequential Sensing of Picric Acid and Aliphatic Amines: Physicochemical Details and Construction of Molecular Logic Gates. Chem Asian J 2021; 16:1157-1164. [PMID: 33787004 DOI: 10.1002/asia.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Indexed: 01/09/2023]
Abstract
Picric acid (PA) at low concentration is a serious water pollutant. Alongside, aliphatic amines (AAs) add to the queue to pollute surface water. Plenty of reports are available to sense PA with an ultralow limit of detection (LOD). However, only a handful of works are testified to detect AAs. A new fluorescent donor-acceptor compound has been synthesized with inherent intramolecular charge transfer (ICT) character that enables selective and sensitive colorimetric quantitative detection of PA and AAs with low LODs in non-aqueous as well as aqueous solutions. The synthesized compound is based on a hemicyanine skeleton containing two pyridenylmethylamino groups at the donor and a benzothiazole moiety at the acceptor ends. The detailed mechanisms and reaction dynamics are explained spectroscopically along with computational support. The fluorescence property of the detecting compound changes due to protonation of its pyridinyl centers by PA leading to quenching of fluorescence and subsequently de-protonation by AAs to revive the signal. We have further designed logic circuits from the acquired optical responses by sequential interactions.
Collapse
Affiliation(s)
- Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Sourav Kanti Seth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arnab Ghosh
- Department of Materials Science, Indian Association for the Cultivation of Science, 700032, Jadavpur, Kolkata, India
| | - Pradip Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Kalla Bypass More, WB 713340, Burdwan, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| |
Collapse
|
6
|
Jejurkar VP, Sourabh KT, Yashwantrao G, Mone NS, Maliekal PJ, Badani P, Satpute S, Saha S. Troger's Base Derived Butterfly Shaped Contorted AIEgens for Dead Bacterial Cell‐Imaging. ChemistrySelect 2021. [DOI: 10.1002/slct.202004481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valmik P. Jejurkar
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - K. T. Sourabh
- Department of Chemical Engineering Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - Gauravi Yashwantrao
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - Nishigandha S. Mone
- Department of Microbiology Savitribai Phule Pune University Pune, (SPPU) India
| | | | - Purav Badani
- Department of Chemistry University of Mumbai Mumbai India
| | - Surekha Satpute
- Department of Microbiology Savitribai Phule Pune University Pune, (SPPU) India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| |
Collapse
|
7
|
Jejurkar VP, Yashwantrao G, Kumar P, Neekhra S, Maliekal PJ, Badani P, Srivastava R, Saha S. Design and Development of Axially Chiral Bis(naphthofuran) Luminogens as Fluorescent Probes for Cell Imaging. Chemistry 2021; 27:5470-5482. [PMID: 33368715 DOI: 10.1002/chem.202004942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/07/2022]
Abstract
Designing chiral AIEgens without aggregation-induced emission (AIE)-active molecules externally tagged to the chiral scaffold remains a long-standing challenge for the scientific community. The inherent aggregation-caused quenching phenomenon associated with the axially chiral (R)-[1,1'-binaphthalene]-2,2'-diol ((R)-BINOL) scaffold, together with its marginal Stokes shift, limits its application as a chiral AIE-active material. Here, in our effort to design chiral luminogens, we have developed a design strategy in which 2-substituted furans, when appropriately fused with the BINOL scaffold, will generate solid-state emissive materials with high thermal and photostability as well as colour-tunable properties. The excellent biocompatibility, together with the high fluorescence quantum yield and large Stokes shift, of one of the luminogens stimulated us to investigate its cell-imaging potential. The luminogen was observed to be well internalised and uniformly dispersed within the cytoplasm of MDA-MB-231 cancer cells, showing high fluorescence intensity.
Collapse
Affiliation(s)
- Valmik P Jejurkar
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| | - Gauravi Yashwantrao
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| | - Pawan Kumar
- Department of Biotechnology, BIT Mesra, Ranchi, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, IIT Bombay, Bombay, India
| | | | - Purav Badani
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, IIT Bombay, Bombay, India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| |
Collapse
|
8
|
Jejurkar VP, Yashwantrao G, Saha S. Tröger's base functionalized recyclable porous covalent organic polymer (COP) for dye adsorption from water. NEW J CHEM 2020. [DOI: 10.1039/d0nj01735c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tröger's base incorporated recyclable COP for acid dye removal from effluent.
Collapse
Affiliation(s)
- Valmik P. Jejurkar
- Department of Dyestuff Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Gauravi Yashwantrao
- Department of Dyestuff Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Dyestuff Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|