1
|
Niederst L, Allonas X, Ley C, Rölle T, Holzheimer M, Nault L. Beyond the Diffusion Limit: Pre-Associated Ion-Pair Photoinitiating Systems for Radical Photopolymerization. Chemistry 2025; 31:e202403894. [PMID: 39539101 DOI: 10.1002/chem.202403894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
The pre-association mechanism of an ion-pair Type II photoinitiating system (PIS) acting in the visible range was studied. The choice of a dye as photoinitiator (crystal violet) with an excited state lifetime of 200 ps ensured the absence of dynamical quenching by the borate salts used as coinitiator. In spite of the fact that no diffusional bimolecular quenching can take place, excellent polymerization efficiency was found, underlining the high reactivity of the PIS. A saturation effect is observed when increasing the concentration of borate as a consequence of the pre-association mechanism arising from coulombic interaction between the cationic dye and the anionic coinitiator. The association equilibria of the system were described and the corresponding association constant values were calculated, allowing to quantify the pre-association efficiency. This was further successfully correlated to the observed maximal rates of polymerization. The efficiency of this super-stoichiometric sample with an excess of borate was finally compared to the stoichiometric 1 : 1 dye:borate ion-pair. It is shown that the pre-association mechanism could lead to much higher efficiency than the stoichiometric ion-pair.
Collapse
Affiliation(s)
- Léo Niederst
- Laboratory of Macromolecular Photochemistry and Engineering, Université de Haute Alsace, 3b rue Alfred Werner, 68093, Mulhouse, France
| | - Xavier Allonas
- Laboratory of Macromolecular Photochemistry and Engineering, Université de Haute Alsace, 3b rue Alfred Werner, 68093, Mulhouse, France
| | - Christian Ley
- Laboratory of Macromolecular Photochemistry and Engineering, Université de Haute Alsace, 3b rue Alfred Werner, 68093, Mulhouse, France
| | - Thomas Rölle
- Covestro Deutschland AG, Specialty Films - Research and Development, 51365, Leverkusen, Germany
| | - Mira Holzheimer
- Covestro Deutschland AG, Specialty Films - Research and Development, 51365, Leverkusen, Germany
| | - Lena Nault
- Covestro Deutschland AG, Specialty Films - Research and Development, 51365, Leverkusen, Germany
| |
Collapse
|
3
|
Zhu G, von Coelln N, Hou Y, Vazquez-Martel C, Spiegel CA, Tegeder P, Blasco E. Digital Light 3D Printing of Double Thermoplastics with Customizable Mechanical Properties and Versatile Reprocessability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401561. [PMID: 38949414 DOI: 10.1002/adma.202401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Digital light processing (DLP) is a 3D printing technology offering high resolution and speed. Printable materials are commonly based on multifunctional monomers, resulting in the formation of thermosets that usually cannot be reprocessed or recycled. Some efforts are made in DLP 3D printing of thermoplastic materials. However, these materials exhibit limited and poor mechanical properties. Here, a new strategy is presented for DLP 3D printing of thermoplastics based on a sequential construction of two linear polymers with contrasting (stiff and flexible) mechanical properties. The inks consist of two vinyl monomers, which lead to the stiff linear polymer, and α-lipoic acid, which forms the flexible linear polymer via thermal ring-opening polymerization in a second step. By varying the ratio of stiff and flexible linear polymers, the mechanical properties can be tuned with Young's modulus ranging from 1.1 GPa to 0.7 MPa, while the strain at break increased from 4% to 574%. Furthermore, these printed thermoplastics allow for a variety of reprocessability pathways including self-healing, solvent casting, reprinting, and closed-loop recycling of the flexible polymer, contributing to the development of a sustainable materials economy. Last, the potential of the new material in applications ranging from soft robotics to electronics is demonstrated.
Collapse
Affiliation(s)
- Guangda Zhu
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nadine von Coelln
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Yi Hou
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Clara Vazquez-Martel
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Christoph A Spiegel
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Tegeder
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Kolibaba TJ, Killgore JP, Caplins BW, Higgins CI, Arp U, Miller CC, Poster DL, Zong Y, Broce S, Wang T, Talačka V, Andersson J, Davenport A, Panzer MA, Tumbleston JR, Gonzalez JM, Huffstetler J, Lund BR, Billerbeck K, Clay AM, Fratarcangeli MR, Qi HJ, Porcincula DH, Bezek LB, Kikuta K, Pearlson MN, Walker DA, Long CJ, Hasa E, Aguirre-Soto A, Celis-Guzman A, Backman DE, Sridhar RL, Cavicchi KA, Viereckl RJ, Tong E, Hansen CJ, Shah DM, Kinane C, Pena-Francesch A, Antonini C, Chaudhary R, Muraca G, Bensouda Y, Zhang Y, Zhao X. Results of an interlaboratory study on the working curve in vat photopolymerization. ADDITIVE MANUFACTURING 2024; 84:10.1016/j.addma.2024.104082. [PMID: 38567361 PMCID: PMC10986335 DOI: 10.1016/j.addma.2024.104082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.
Collapse
Affiliation(s)
- Thomas J. Kolibaba
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Jason P. Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Benjamin W. Caplins
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Callie I. Higgins
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Uwe Arp
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - C. Cameron Miller
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Dianne L. Poster
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Yuqin Zong
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Scott Broce
- 3D Systems, 26600 SW Parkway Ave #300, Wilsonville, OR 97070, USA
| | - Tong Wang
- Allnex USA Inc., 9005 Westside Parkway, Alpharetta, GA 30009, USA
| | | | | | - Amelia Davenport
- Arkema, Inc., 1880 S. Flatirons Ct. Suite J, Boulder, CO 80301, USA
| | | | | | | | | | - Benjamin R. Lund
- Desktop Metal, 1122 Alma Rd. Ste. 100, Richardson, TX 75081, USA
| | - Kai Billerbeck
- DMG Digital Enterprises SE, Elbgaustraße 248, Hamburg 22547, Germany
| | - Anthony M. Clay
- DEVCOM-Army Research Laboratory, FCDD-RLW-M, Manufacturing Science and Technology Branch, 6300 Roadman Road, Aberdeen Proving Ground, MD 21005, USA
| | - Marcus R. Fratarcangeli
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr, Atlanta, GA 30332, USA
| | - H. Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr, Atlanta, GA 30332, USA
| | | | - Lindsey B. Bezek
- Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| | - Kenji Kikuta
- Osaka Organic Chemical Industry, Ltd., 1-7-2, Nihonbashi Honcho, Chuo, Tokyo 103-0023, Japan
| | | | | | - Corey J. Long
- Sartomer, 502 Thomas Jones Way, Exton, PA 19341, USA
| | - Erion Hasa
- Stratasys, Inc., 1122 Saint Charles St, Elgin, IL 60120, USA
| | - Alan Aguirre-Soto
- School of Engineering and Science, Tecnologico de Monterrey, Colonia Tecnológico, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Angel Celis-Guzman
- School of Engineering and Science, Tecnologico de Monterrey, Colonia Tecnológico, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Daniel E. Backman
- Lung Biotechnology, PBC., 1000 Sprint Street, Silver Spring, MD 20910, USA
| | | | - Kevin A. Cavicchi
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - RJ Viereckl
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - Elliott Tong
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - Christopher J. Hansen
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Darshil M. Shah
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Cecelia Kinane
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Rajat Chaudhary
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Gabriele Muraca
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Yousra Bensouda
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| | - Yue Zhang
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| | - Xiayun Zhao
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
O’Dea C, Isokuortti J, Comer EE, Roberts ST, Page ZA. Triplet Upconversion under Ambient Conditions Enables Digital Light Processing 3D Printing. ACS CENTRAL SCIENCE 2024; 10:272-282. [PMID: 38435512 PMCID: PMC10906251 DOI: 10.1021/acscentsci.3c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 03/05/2024]
Abstract
The rapid photochemical conversion of materials from liquid to solid (i.e., curing) has enabled the fabrication of modern plastics used in microelectronics, dentistry, and medicine. However, industrialized photocurables remain restricted to unimolecular bond homolysis reactions (Type I photoinitiations) that are driven by high-energy UV light. This narrow mechanistic scope both challenges the production of high-resolution objects and restricts the materials that can be produced using emergent manufacturing technologies (e.g., 3D printing). Herein we develop a photosystem based on triplet-triplet annihilation upconversion (TTA-UC) that efficiently drives a Type I photocuring process using green light at low power density (<10 mW/cm2) and in the presence of ambient oxygen. This system also exhibits a superlinear dependence of its cure depth on the light exposure intensity, which enhances spatial resolution. This enables for the first-time integration of TTA-UC in an inexpensive, rapid, and high-resolution manufacturing process, digital light processing (DLP) 3D printing. Moreover, relative to traditional Type I and Type II (photoredox) strategies, the present TTA-UC photoinitiation method results in improved cure depth confinement and resin shelf stability. This report provides a user-friendly avenue to utilize TTA-UC in ambient photochemical processes and paves the way toward fabrication of next-generation plastics with improved geometric precision and functionality.
Collapse
Affiliation(s)
- Connor
J. O’Dea
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Jussi Isokuortti
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Emma E. Comer
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Sean T. Roberts
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Zachariah A. Page
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| |
Collapse
|