1
|
Titov E. The Role of Double Excitations in Exciton Dynamics of Multiazobenzenes: Trisazobenzenophane as a Test Case. J Phys Chem Lett 2024; 15:7482-7488. [PMID: 39011968 DOI: 10.1021/acs.jpclett.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Molecular exciton dynamics underlie energy and charge transfer processes in organic multichromophoric systems. A particularly interesting class of the latter is multiphotochromic systems made of molecules capable of photochemical transformations. Exciton dynamics in assemblies of photoswitches have been recently investigated using either the molecular exciton model or supermolecular configuration interaction (CI) singles, both approaches being based on a semiempirical Hamiltonian and combined with surface hopping molecular dynamics. Here, we study how inclusion of double excitations in nonadiabatic dynamics simulations affects exciton dynamics of multiazobenzenes, using trisazobenzenophane as an example. We find that both CI singles and CI singles and doubles yield virtually the same time scale of dynamical exciton localization, ∼50 fs for the studied multiazobenzene. However, inclusion of double excitations considerably affects the excited state lifetimes and isomerization quantum yields.
Collapse
Affiliation(s)
- Evgenii Titov
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Sisodiya DS, Chattopadhyay A. The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system. J Chem Phys 2024; 161:034307. [PMID: 39017425 DOI: 10.1063/5.0206946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2'-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5-5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| |
Collapse
|
3
|
Titov E. Visible Light Induced Exciton Dynamics and trans-to- cis Isomerization in Azobenzene Aggregates: Insights from Surface Hopping/Semiempirical Configuration Interaction Molecular Dynamics Simulations. ACS OMEGA 2024; 9:8520-8532. [PMID: 38405525 PMCID: PMC10882624 DOI: 10.1021/acsomega.3c09900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Assemblies of photochromic molecules feature exciton states, which govern photochemical and photophysical processes in multichromophoric systems. Understanding the photoinduced dynamics of the assemblies requires nonadiabatic treatment involving multiple exciton states and numerous nuclear degrees of freedom, thus posing a challenge for simulations. In this work, we address this challenge for aggregates of azobenzene, a prototypical molecular switch, performing on-the-fly surface hopping calculations combined with semiempirical configuration interaction electronic structure and augmented with transition density matrix analysis to characterize exciton evolution. Specifically, we consider excitation of azobenzene tetramers in the nπ* absorption band located in the visible (blue) part of the electromagnetic spectrum, thus extending our recent work on dynamics after ππ* excitation corresponding to the ultraviolet region [Titov, J. Phys. Chem. C2023, 127, 13678-13688]. We find that the nπ* excitons, which are initially strongly localized by ground-state conformational disorder, undergo further (very strong) localization during short-time photodynamics. This excited-state localization process is extremely ultrafast, occurring within the first 10 fs of photodynamics. We observe virtually no exciton transfer of the localized excitons in the nπ* manifold. However, the transfer may occur via secondary pathways involving ππ* states or the ground state. Moreover, we find that the nπ* quantum yields of the trans-to-cis isomerization are reduced in the aggregated state.
Collapse
Affiliation(s)
- Evgenii Titov
- Institute of Chemistry, Theoretical
Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Sisodiya DS, Ali SM, Chattopadhyay A. Unexplored Isomerization Pathways of Azobis(benzo-15-crown-5): Computational Studies on a Butterfly Crown Ether. J Phys Chem A 2023; 127:7080-7093. [PMID: 37526572 DOI: 10.1021/acs.jpca.3c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Computational studies on trans → cis and cis → trans isomerizations of photoresponsive azobis(benzo-15-crown-5) have been reported in this work. The photoexcited ππ* state (S2) of the trans isomer relaxes through the planar S2 minimum and the planar S2/S1 conical intersection (both situated around 9 kcal/mol below the vertically excited S2 state) arising along the N═N stretching coordinate. The nπ* state (S1) of this isomer has both planar and rotated (clockwise and anticlockwise) minima, which may lead to a torsional conical intersection (S0/S1) geometry having a
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, India
| | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, India
| |
Collapse
|
5
|
Bjørnestad VA, Li X, Tribet C, Lund R, Cascella M. Micelle kinetics of photoswitchable surfactants: Self-assembly pathways and relaxation mechanisms. J Colloid Interface Sci 2023; 646:883-899. [PMID: 37235934 DOI: 10.1016/j.jcis.2023.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
HYPOTHESIS A key question in the kinetics of surfactant self-assembly is whether exchange of unimers or fusion/fission of entire micelles is the dominant pathway. In this study, an isomerizable surfactant is used to explore fundamental out-of-equilibrium kinetics and mechanisms for growth and dissolution of micelles. EXPERIMENTS The kinetics of cationic surfactant 4-butyl-4'-(3-trimethylammoniumpropoxy)-phenylazobenzene was studied using molecular dynamics simulations. The fusion and exchange processes were investigated using umbrella sampling. Equilibrium states were validated by comparison with small-angle X-ray scattering data. The photo-isomerization event was simulated by modifying the torsion potential of the photo-responsive group to emulate the trans-to-cis transition. FINDINGS Micelle growth is dominated by unimer exchange processes, whereas, depending on the conditions, dissolution can occur both through fission and unimer expulsion. Fusion barriers increase steeply with the aggregation number making this an unlikely pathway to equilibrium for micelles of sizes that fit with the experimental data. The barriers for unimer expulsion remain constant and are much lower for unimer insertion, making exchange more likely at high aggregation. When simulating photo-conversion events, both fission and a large degree of unimer expulsion can occur depending on the extent of the out-of-equilibrium stress that is put on the system.
Collapse
Affiliation(s)
- Victoria Ariel Bjørnestad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway
| | - Xinmeng Li
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Reidar Lund
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway.
| | - Michele Cascella
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway.
| |
Collapse
|
6
|
Titov E, Beqiraj A. Exciton States of Azobenzene Aggregates: A First‐Principles Study. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Evgenii Titov
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| | - Alkit Beqiraj
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| |
Collapse
|
7
|
Photosensitive Spherical Polymer Brushes: Light-Triggered Process of Particle Repulsion. Processes (Basel) 2023. [DOI: 10.3390/pr11030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
We report on a light-triggered process at which repulsive interactions between microparticles with a polyelectrolyte (PE) brush coating can be remotely controlled. The spherical polyelectrolyte brushes are loaded with photosensitive azobenzene containing surfactant which can undergo reversible photo-isomerization from trans to cis state. The surfactant hydrophilicity is altered by illumination with light of an appropriate wavelength, at which a dynamic exchange of the more surface-active trans isomer in comparison to the more water soluble cis isomer with the PE brush generates a concentration gradient of the cis isomers near a solid surface where the particle is sedimented. In this way, each spherical brush produces its local lateral diffusioosmotic flow pointing outside in a radial direction resulting in mutual long-range repulsive interactions. We demonstrate that a PE layer has a higher tendency to absorb surfactant in comparison to plain silica particles, yielding a larger flow strength. This correlation holds true up to a critical intensity, where the dynamic exchange is adsorption limited with respect to trans isomers and especially pronounced for the PE-coated particles.
Collapse
|
8
|
Titov E. Effect of conformational disorder on exciton states of an azobenzene aggregate. Phys Chem Chem Phys 2022; 24:24002-24006. [PMID: 36178007 DOI: 10.1039/d2cp02774g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azobenzene is a prototypical molecular photoswitch, widely used to trigger a variety of transformations at different length scales. In systems like self-assembled monolayers or micelles, azobenzene chromophores may interact with each other, which gives rise to the emergence of exciton states. Here, using first-principles calculations, we investigate how conformational disorder (induced, e.g., by thermal fluctuations) affects localization of these states, on an example of an H-type azobenzene tetramer. We find that conformational disorder leads to (partial) exciton localization on a single-geometry level, whereas ensemble-averaging results in a delocalized picture. The ππ* and nπ* excitons at high and low temperatures are discussed.
Collapse
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
9
|
Reifarth M, Bekir M, Bapolisi AM, Titov E, Nußhardt F, Nowaczyk J, Grigoriev D, Sharma A, Saalfrank P, Santer S, Hartlieb M, Böker A. A Dual pH‐ and Light‐Responsive Spiropyran‐Based Surfactant: Investigations on Its Switching Behavior and Remote Control over Emulsion Stability. Angew Chem Int Ed Engl 2022; 61:e202114687. [PMID: 35178847 PMCID: PMC9400902 DOI: 10.1002/anie.202114687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/10/2022]
Abstract
A cationic surfactant containing a spiropyran unit is prepared exhibiting a dual‐responsive adjustability of its surface‐active characteristics. The switching mechanism of the system relies on the reversible conversion of the non‐ionic spiropyran (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH‐dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided. This complex stimuli‐responsive behavior enables remote‐control of colloidal systems. To demonstrate its applicability, the surfactant is utilized for the pH‐dependent manipulation of oil‐in‐water emulsions.
Collapse
Affiliation(s)
- Martin Reifarth
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Marek Bekir
- University of Potsdam Institute of Physics and Astronomy Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Alain M. Bapolisi
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Evgenii Titov
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Fabian Nußhardt
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Julius Nowaczyk
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Dmitry Grigoriev
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Anjali Sharma
- University of Potsdam Institute of Physics and Astronomy Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Peter Saalfrank
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Svetlana Santer
- University of Potsdam Institute of Physics and Astronomy Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Matthias Hartlieb
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Alexander Böker
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| |
Collapse
|
10
|
Reifarth M, Bekir M, Bapolisi AM, Titov E, Nußhardt F, Nowaczyk J, Grigoriev D, Sharma A, Saalfrank P, Santer S, Hartlieb M, Böker A. A Dual pH and Light‐Responsive Spiropyrane‐Based Surfactant: Investigations on its Switching Behavior and Remote Control over Emulsion Stability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Reifarth
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Marek Bekir
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Alain M. Bapolisi
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Evgenii Titov
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Fabian Nußhardt
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Life Sciences and Bioprocesses GERMANY
| | - Julius Nowaczyk
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Dmitry Grigoriev
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Life Sciences and Bioprocesses GERMANY
| | - Anjali Sharma
- University of Potsdam: Universitat Potsdam Institut für Physik GERMANY
| | - Peter Saalfrank
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Svetlana Santer
- University of Potsdam: Universitat Potsdam Institut für Physik GERMANY
| | - Matthias Hartlieb
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Alexander Böker
- Universität Potsdam: Universitat Potsdam Lehrstuhl für Polymermaterialien und Polymertechnologienlächen Geiselbergstrasse 69 D-14476 Potsdam GERMANY
| |
Collapse
|