1
|
Bansode AH, Yin L, Deng N, Afrasi M, Zhu Y, Parasram M. Accessing Azetidines through Magnesium-Mediated Nitrogen Group Transfer from Iminoiodinane to Donor-Acceptor Cyclopropanes. Angew Chem Int Ed Engl 2025; 64:e202420485. [PMID: 39776232 DOI: 10.1002/anie.202420485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Herein, we report a Lewis acid-mediated ring expansion of donor-acceptor cyclopropanes (DACs) to substituted azetidines via nucleophilic nitrogen group transfer from readily accessible iminoiodinane. This protocol operates under mild, transition-metal-free conditions, and showcases excellent chemoselectivity, along with broad functional group tolerance. We report for the first time that challenging alkyl donor-acceptor cyclopropanes can undergo ring expansion leading to aliphatic azetidines without relying on external oxidants or precious transition-metal catalysts. Mechanistically, the coordination of a magnesium (Mg)-Lewis acid to the DAC promotes nucleophilic ring opening with a putative Mg-amide species generated from the iminoiodinane under the reaction conditions to furnish the azetidine products.
Collapse
Affiliation(s)
- Ajay H Bansode
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Lifeng Yin
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Ning Deng
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Mahmoud Afrasi
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Yiyi Zhu
- Department of Teaching and Learning, New York University, New York, New York, 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New York University, New York, New York, 10003, United States
| |
Collapse
|
2
|
Rath S, Patel S, Choppella S, Menon P, Garain T, Banerjee S, Ravva MK, Sen S. Photolytic ortho-Selective Amino Pyridylation of Aryl Isocyanates with N-Amino Pyridinium Ylides for the Synthesis of N-Arylsulfonyl Ureas. J Org Chem 2024; 89:14770-14784. [PMID: 39373291 DOI: 10.1021/acs.joc.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Herein, we report an expedient synthesis of aryl sulfonyl ureas 4 and 5 from N-amino pyridinium ylides and aryl isocyanates. N-Aminopyridinium ylides 3 are synthesized via blue light-emitting diode irradiation of pyridine/isoquinoline and appropriate iminoiodinanes. The strategy involved a hitherto unknown carboamination of imine moieties (of aryl isocyanates) via a three-component reaction of pyridine derivatives/isoquinoline 1, N-aryl sulfonyl iminoiodinanes 2, and numerous aryl isocyanates at room temperature in 2-methyl tetrahydrofuran to afford the target compounds in moderate to excellent yields. N-Arylpyridinium ylides 3 (as intermediates) undergo a [3+2] cycloaddition with the aryl isocyanates followed by the aromatization of the pyridine/isoquinoline moiety to afford compounds 4. On the basis of the substitution pattern among the reactants, in some cases pyridine extrusion occurs during the reaction to afford depyridinylated aryl sulfonyl ureas 5. In general, isocyanates are used as dipolarophiles in [3+2] cycloaddition reactions. However, regioselective amino pyridylation of these species is a first. Control experiments and density functional theory calculations elucidate the reaction mechanism. The batch process of the protocol could be seamlessly transferred to the photoflow synthesis.
Collapse
Affiliation(s)
- Suchismita Rath
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar, UP 201314, India
| | - Shreemad Patel
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar, UP 201314, India
| | | | - Pranoy Menon
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar, UP 201314, India
| | - Tanya Garain
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132-0001, United States
| | - Souvik Banerjee
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132-0001, United States
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | | | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar, UP 201314, India
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Arichi N, Amano T, Wu S, Inuki S, Ohno H. Synthesis of Sulfilimines via Visible-Light-Mediated Triplet Energy Transfer to Sulfonyl Azides. Chemistry 2024; 30:e202401842. [PMID: 38923056 DOI: 10.1002/chem.202401842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Sulfilimines and their derivatives have garnered considerable interest in both synthetic and medicinal chemistry. Photochemical nitrene transfer to sulfides is known as a conventional synthetic approach to sulfilimines. However, the existing methods have a limited substrate scope stemming from the incompatibility of singlet nitrene intermediates with nucleophilic functional groups. Herein, we report the synthesis of N-sulfonyl sulfilimines via visible-light-mediated energy transfer to sulfonyl azides, uncovering the previously overlooked reactivity of triplet nitrenes with sulfides. This reaction features broad functional group tolerance, water compatibility, and amenability to the late-stage functionalization of drugs. Thus, this work represents an important example of energy transfer chemistry that overcomes challenges in traditional synthetic methods.
Collapse
Affiliation(s)
- Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsuyoshi Amano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuhan Wu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
5
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
6
|
Mitchell J, Hussain WA, Bansode AH, O’Connor RM, Parasram M. Aziridination via Nitrogen-Atom Transfer to Olefins from Photoexcited Azoxy-Triazenes. J Am Chem Soc 2024; 146:9499-9505. [PMID: 38522088 PMCID: PMC11009954 DOI: 10.1021/jacs.3c14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Herein, we report that readily accessible azoxy-triazenes can serve as nitrogen atom sources under visible light excitation for the phthalimido-protected aziridination of alkenes. This approach eliminates the need for external oxidants, precious transition metals, and photocatalysts, marking a departure from conventional methods. The versatility of this transformation extends to the selective aziridination of both activated and unactivated multisubstituted alkenes of varying electronic profiles. Notably, this process avoids the formation of competing C-H insertion products. The described protocol is operationally simple, scalable, and adaptable to photoflow conditions. Mechanistic studies support the idea that the photofragmentation of azoxy-triazenes results in the generation of a free singlet nitrene. Furthermore, a mild photoredox-catalyzed N-N cleavage of the protecting group to furnish the free aziridines is reported. Our findings contribute to the advancement of sustainable and practical methodologies for the synthesis of nitrogen-containing compounds, showcasing the potential for broader applications in synthetic chemistry.
Collapse
Affiliation(s)
- Joshua
K. Mitchell
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Waseem A. Hussain
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ajay H. Bansode
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ryan M. O’Connor
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New
York University, New York, New York 10003, United States
| |
Collapse
|
7
|
Song L, Tian X, Farshadfar K, Shiri F, Rominger F, Ariafard A, Hashmi ASK. An unexpected synthesis of azepinone derivatives through a metal-free photochemical cascade reaction. Nat Commun 2023; 14:831. [PMID: 36788212 PMCID: PMC9929248 DOI: 10.1038/s41467-023-36190-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Azepinone derivatives are privileged in organic synthesis and pharmaceuticals. Synthetic approaches to these frameworks are limited to complex substrates, strong bases, high power UV light or noble metal catalysis. We herein report a mild synthesis of azepinone derivatives by a photochemical generation of 2-aryloxyaryl nitrene, [2 + 1] annulation, ring expansion/water addition cascade reaction without using any metal catalyst. Among the different nitrene precursors tested, 2-aryloxyaryl azides performed best under blue light irradiation and Brønsted acid catalysis. The reaction scope is broad and the obtained products underwent divergent transformations to afford other related compounds. A computational study suggests a pathway involving a step-wise aziridine formation, followed by a ring-expansion to the seven-membered heterocycle. Finally, water is added in a regio-selective manner, this is accelerated by the added TsOH.
Collapse
Affiliation(s)
- Lina Song
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany
| | - Xianhai Tian
- Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany.
| | - Kaveh Farshadfar
- grid.411463.50000 0001 0706 2472Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran ,grid.5373.20000000108389418Research Group of Computational Chemistry, Department of Chemistry and Materials Science, Aalto University, Aalto, Finland
| | - Farshad Shiri
- grid.411463.50000 0001 0706 2472Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Frank Rominger
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran. .,School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - A. Stephen K. Hashmi
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany ,grid.412125.10000 0001 0619 1117Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Wang HH, Shao H, Huang G, Fan J, To WP, Dang L, Liu Y, Che CM. Chiral Iron Porphyrins Catalyze Enantioselective Intramolecular C(sp 3 )-H Bond Amination Upon Visible-Light Irradiation. Angew Chem Int Ed Engl 2023; 62:e202218577. [PMID: 36716145 DOI: 10.1002/anie.202218577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Iron-catalyzed asymmetric amination of C(sp3 )-H bonds is appealing for synthetic applications due to the biocompatibility and high earth abundance of iron, but examples of such reactions are sparse. Herein we describe chiral iron complexes of meso- and β-substituted-porphyrins that can catalyze asymmetric intramolecular C(sp3 )-H amination of aryl and arylsulfonyl azides to afford chiral indolines (29 examples) and benzofused cyclic sulfonamides (17 examples), respectively, with up to 93 % ee (yield: up to 99 %) using 410 nm light under mild conditions. Mechanistic studies, including DFT calculations, for the reactions of arylsulfonyl azides reveal that the Fe(NSO2 Ar) intermediate generated in situ under photochemical conditions reacts with the C(sp3 )-H bond through a stepwise hydrogen atom transfer/radical rebound mechanism, with enantioselectivity arising from cooperative noncovalent interactions between the Fe(NSO2 Ar) unit and the peripheral substituents of the chiral porphyrin scaffold.
Collapse
Affiliation(s)
- Hua-Hua Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hui Shao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Jianqiang Fan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science and Technology Parks New Territories, Hong Kong, China
| |
Collapse
|
9
|
Pan J, Li H, Sun K, Tang S, Yu B. Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas. Molecules 2022; 27:3648. [PMID: 35744775 PMCID: PMC9229220 DOI: 10.3390/molecules27123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
A visible-light-induced external catalyst-free decarboxylation of dioxazolones was realized for the bond formation of N=P and N-C bonds to access phosphinimidic amides and ureas. Various phosphinimidic amides and ureas (47 examples) were synthesized with high yields (up to 98%) by this practical strategy in the presence of the system's ppm Fe.
Collapse
Affiliation(s)
- Jie Pan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| | - Haocong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
- College of Chemistry & Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China;
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| |
Collapse
|