1
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
2
|
Lee SW, Kwon OH. Lifetimes and Lifetime-Associated Spectra for Reversible Excited Two-State Reactions. J Phys Chem A 2025; 129:447-458. [PMID: 39741468 DOI: 10.1021/acs.jpca.4c05733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Photoinduced excited-state processes have been platforms for understanding the molecular mechanisms of many chemical and biological reactions. To elucidate associated chemical kinetics, time-resolved spectroscopic experiments have been performed tracking how the populations of reactants and products change during the reactions while reaction conditions such as the concentration of a reactant, temperature, and solvent properties change. Here, we simulate the lifetimes of a reactant and a product, and construct their lifetime-associated spectra with the various combinations of rate constants based on the analytical solutions of differential rate equations. Depending on the combinations of the rate constants, the results diverge, which has often been overlooked in previous works. To demonstrate the validity of our approach, the results are compared with the experimental results on diffusion-controlled excited-state proton transfer. The presented global analysis simulation can generally be applied to other excited two-state reactions.
Collapse
Affiliation(s)
- Seung-Woo Lee
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Gary S, Woolley J, Goia S, Bloom S. Unlocking flavin photoacid catalysis through electrophotochemistry. Chem Sci 2024; 15:11444-11454. [PMID: 39055006 PMCID: PMC11268482 DOI: 10.1039/d4sc03054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Molecular flavins are one of the most versatile photocatalysts. They can coordinate single and multiple electron transfer processes, gift hydrogen atoms, form reversible covalent linkages that support group transfer mechanisms, and impart photonic energy to ground state molecules, priming them for downstream reactions. But one mechanism that has not featured extensively is the ability of flavins to act as photoacids. Herein, we disclose our proof-of-concept studies showing that electrophotochemistry can transform fully oxidized flavin quinones to super-oxidized flavinium photoacids that successfully guide proton-transfer and deliver acid-catalyzed products. We also show that these species can adopt a second mechanism wherein they react with water to release hydroxyl radicals that facilitate hydrogen-atom abstraction and sp3C-H functionalization protocols. Together, this unprecedented bimodal reactivity enables electro-generated flavinium salts to affect synthetic chemistries previously unknown to flavins, greatly expanding their versatility as catalysts.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas Lawrence 66045 USA
| | - Jack Woolley
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - Sofia Goia
- Forensic Centre for Digital Scanning and 3D Printing, WMG, University of Warwick Coventry CV4 7AL UK
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas Lawrence 66045 USA
| |
Collapse
|
4
|
Ma YZ, Premadasa UI, Bryantsev VS, Miles AR, Ivanov IN, Elgattar A, Liao Y, Doughty B. Unravelling photoisomerization dynamics in a metastable-state photoacid. Phys Chem Chem Phys 2024; 26:4062-4070. [PMID: 38224171 DOI: 10.1039/d3cp04454h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Direct access to trans-cis photoisomerization in a metastable state photoacid (mPAH) remains challenging owing to the presence of competing excited-state relaxation pathways and multiple transient isomers with overlapping spectra. Here, we reveal the photoisomerization dynamics in an indazole mPAH using time-resolved fluorescence (TRF) spectroscopy by exploiting a unique property of this mPAH having fluorescence only from the trans isomer. The combination of these experimental results with time-dependent density function theory (TDDFT) calculations enables us to gain mechanistic insight into this key dynamical process.
Collapse
Affiliation(s)
- Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA.
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA.
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA.
| | - Audrey R Miles
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ilia N Ivanov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Adnan Elgattar
- Department of Biomedical and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Yi Liao
- Department of Biomedical and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA.
| |
Collapse
|
5
|
Knorr J, Sülzner N, Geissler B, Spies C, Grandjean A, Kutta RJ, Jung G, Nuernberger P. Ultrafast transient absorption and solvation of a super-photoacid in acetoneous environments. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2179-2192. [PMID: 36178669 DOI: 10.1007/s43630-022-00287-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022]
Abstract
The phenomenon of photoacidity, i.e., an increase in acidity by several orders of magnitude upon electronic excitation, is frequently encountered in aromatic alcohols capable of transferring a proton to a suitable acceptor. A promising new class of neutral super-photoacids based on pyranine derivatives has been shown to exhibit pronounced solvatochromic effects. To disclose the underlying mechanisms contributing to excited-state proton transfer (ESPT) and the temporal characteristics of solvation and ESPT, we scrutinize the associated ultrafast dynamics of the strongest photoacid of this class, namely tris(1,1,1,3,3,3-hexafluoropropan-2-yl)8-hydroxypyrene-1,3,6-trisulfonate, in acetoneous environment, thereby finding experimental evidence for ESPT even under these adverse conditions for proton transfer. Juxtaposing results from time-correlated single-photon counting and femtosecond transient absorption measurements combined with a complete decomposition of all signal components, i.e., absorption of ground and excited states as well as stimulated emission, we disclose dynamics of solvation, rotational diffusion, and radiative relaxation processes in acetone and identify the relevant steps of ESPT along with the associated time scales.
Collapse
Affiliation(s)
- Johannes Knorr
- Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| | - Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Bastian Geissler
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Christian Spies
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Alexander Grandjean
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany. .,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
6
|
Sülzner N, Hättig C. Theoretical Study on the Photoacidity of Hydroxypyrene Derivatives in DMSO Using ADC(2) and CC2. J Phys Chem A 2022; 126:5911-5923. [PMID: 36037028 DOI: 10.1021/acs.jpca.2c04436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work applies the thermodynamic Förster cycle to theoretically investigate the pKa*, i.e., excited-state pKa values of pyranine-derived superphotoacids developed by Jung and co-workers. The latter photoacids are strong enough to transfer a proton to the aprotic solvent dimethyl sulfoxide (DMSO). The Förster cycle provides access to pKa* via the ground-state pKa and the electronic excitation energies. We use the conductor-like screening model for real solvents (COSMO-RS) to compute the ground-state pKa and the correlated wavefunction-based methods ADC(2) and CC2 with the continuum solvation model COSMO to calculate the pKa change upon excitation. A comparison of the calculated UV/Vis absorption and fluorescence emission energies to the experimental results leads us to infer that this approach allows for a proper description of the electronic excitations. In particular, implicit solvation by means of the COSMO model appears to be sufficient for the treatment of these photoacids in DMSO. The calculations confirm the presumption that a charge redistribution from the hydroxy group to the aromatic ring and the electron-withdrawing substituents is the origin of photoacidity for these photoacids. Moreover, the calculations with the continuum solvation model predict that the pKa jump upon excitation decreases with increasing solvent polarity, as rationalized based on the Förster cycle.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|