1
|
Zhang L, Zheng B, Lu J, Wu H, Wu H, Zhang Q, Jiao L, Pan H, Zhou J. Evaluation of human antibodies from vaccinated volunteers for protection against Yersinia pestis infection. Microbiol Spectr 2024; 12:e0105424. [PMID: 39189763 PMCID: PMC11448073 DOI: 10.1128/spectrum.01054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Yersinia pestis has a broad host range and has caused lethal bubonic and pneumonic plague in humans. With the emergence of multiple resistant strains and the potential for biothreat use, there is an urgent need for new therapeutic strategies that can protect populations from natural or deliberate infection. Targeting F1 has been proven to be the main strategy for developing vaccines and therapeutic antibodies, but data on anti-F1 antibodies, especially in humans, are scarce. To date, three human anti-F1 monoclonal antibodies (m252, αF1Ig2, and αF1Ig8) from naive populations have been reported. Here, we constructed an antibody library from vaccinees immunized with the plague subunit vaccine IIa by phage display. The genetic basis, epitopes, and biological functions of the obtained mAbs were assessed and evaluated in plague-challenged mice. Three human mAbs, namely, F3, F19, and F23, were identified. Their biolayer responses were 0.4, 0.6, and 0.6 nm, respectively. The dissociation constants (KD) of the F1 antigen were 1 pM, 0.165 nM, and 1 pM, respectively. Although derived from distinct Ab lineages, that is, VH3-30-D3-10-JH4 (F3&F23) and VH3-43-D6-19-JH4 (F19), these mAbs share similar binding sites in F1 with some overlap with αF1Ig8 but are distinct from αF1Ig2. Each of them provided a significant protective effect for Balb/c mice against a 100 median lethal dose (MLD) challenge of a virulent Y. pestis strain when administered at a dose of 100 µg. No synergistic or antagonistic effects were observed among them. These mAbs are novel and excellent candidates for further drug development and use in clinical practice.IMPORTANCEIn this study, we identified three human monoclonal antibodies with a high affinity to F1 protein of Yersinia pestis. We discovered that they have relatively lower somatic hypermutations compared with antibodies, m252, αF1Ig2, and αF1Ig8, derived from the naive library reported previously. We also observed that these mAbs share similar binding sites in F1 with some overlapping with αF1Ig8 but distinct from that of αF1Ig2. Furthermore, each of them could provide complete protection for mice against a lethal dose of Yersinia pestis challenge. Our data provided new insights into the anti-F1 Ab repertories and their associated epitopes during vaccination in humans. The findings support the additional novel protective human anti-F1Abs for potential therapeutics against plaque.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Binyang Zheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Lu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Hailian Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Lei Jiao
- Lanzhou Institute of Biological Products Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Lanzhou, China
| | - Hongxing Pan
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Liu Z, Kim D, Kang S, Jung JU. A Detailed Protocol for Constructing a Human Single-Chain Variable Fragment (scFv) Library and Downstream Screening via Phage Display. Methods Protoc 2024; 7:13. [PMID: 38392687 PMCID: PMC10893473 DOI: 10.3390/mps7010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The development of monoclonal antibodies (mAbs) represents a significant milestone in both basic research and clinical applications due to their target specificity and versatility in therapeutic and diagnostic applications. The innovative strategy of mAb screening, utilizing phage display, facilitates the in vitro screening of antibodies with high affinity to target antigens. The single-chain variable fragment (scFv) is a subset of mAb derivatives, known for its high binding affinity and smaller size-just one-third of that of human IgG. This report outlines a detailed and comprehensive procedure for constructing a scFv phagemid library derived from human patients, followed by screening via phage display affinity selection. The protocol utilizes 348 primer combinations spanning the entire human antibody repertoire to minimize sequence bias and maintain library diversity during polymerase chain reaction (PCR) for scFv generation, resulting in a library size greater than 1 × 108. Furthermore, we describe a high-throughput phage display screening protocol using enzyme-linked immunosorbent assay (ELISA) to evaluate more than 1200 scFv candidates. The generation of a highly diverse scFv library, coupled with the implementation of a phage display screening methodology, is expected to provide a valuable resource for researchers in pursuit of scFvs with high affinity for target antigens, thus advancing both research and clinical endeavors.
Collapse
Affiliation(s)
- Ziyi Liu
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dokyun Kim
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Seokmin Kang
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jae U. Jung
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Morselli M, Holton TR, Pellegrini M, Yeates TO, Arbing MA. Design and Construction of a Designed Ankyrin Repeat Protein (DARPin) Display Library. Curr Protoc 2024; 4:e960. [PMID: 38206591 DOI: 10.1002/cpz1.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Protein display systems are powerful techniques used to identify protein molecules that bind with high affinity to target proteins of interest. The initial challenge in implementing a display system is the construction of a high-diversity naïve library. Here, we describe the methods to generate a designed ankyrin repeat protein (DARPin) display library using degenerate oligonucleotides. Specifically described is the construction of a single DARPin repeat module by overlap extension PCR, concatenation of the module by restriction enzyme digestion and ligation, and incorporation of the concatenated modules into a full-length DARPin sequence in a bacterial cloning or display vector containing the hydrophilic N- and C-terminal capping domains. Protocols for PCR amplification of DARPin sequences to estimate diversity of naïve and enriched libraries via next-generation sequencing are included, as is a simple Linux-based program for analysis of naïve and enriched sequences. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of a single DARPin repeat by overlap extension PCR Basic Protocol 2: Concatenation of DARPin repeats Basic Protocol 3: Ligation of internal repeats into cloning/display vector containing N- and C-terminal capping repeats Basic Protocol 4: Estimation of library size and diversity by next-generation sequencing (NGS) Basic Protocol 5: NGS analysis of naïve and enriched libraries.
Collapse
Affiliation(s)
- Marco Morselli
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California
- Current Address: Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Thomas R Holton
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
| | - Matteo Pellegrini
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | - Mark A Arbing
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Quintero-Campos P, Gozalbo-Rovira R, Rodríguez-Díaz J, Maquieira Á, Morais S. Standardizing In Vitro β-Lactam Antibiotic Allergy Testing with Synthetic IgE. Anal Chem 2023; 95:12113-12121. [PMID: 37545056 PMCID: PMC10859892 DOI: 10.1021/acs.analchem.3c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
The global prevalence of β-lactam allergy poses a major challenge in administering first-line antibiotics, such as penicillins, to a significant portion of the population. The lack of β-lactam IgE antibody pools with defined selectivity hampers the standardization and validation of in vitro assays for β-lactam allergy testing. To address this limitation, this study introduces a synthetic IgE specific to β-lactam antibiotics as a valuable tool for drug allergy research and diagnostic tests. Using phage display technology, we constructed a library of human single-chain antibody fragments (scFv) to target the primary determinant of amoxicillin, a widely used β-lactam antibiotic. Subsequently, we produced a complete human synthetic IgE molecule using the highly efficient baculovirus expression vector system. This synthetic IgE molecule served as a standard in an in vitro chemiluminescence immunoassay for β-lactam antibiotic allergy testing. Our results demonstrated a detection limit of 0.05 IU/mL (0.63 pM), excellent specificity (100%), and a four-fold higher clinical sensitivity (73%) compared to the in vitro reference assay when testing a cohort of 150 serum samples. These findings have significant implications for reliable interlaboratory comparison studies, accurate labeling of allergic patients, and combating the global public health threat of antimicrobial resistance. Furthermore, by serving as a valuable trueness control material, the synthetic IgE facilitates the standardization of diagnostic tests for β-lactam allergy and demonstrates the potential of utilizing this synthetic strategy as a promising approach for generating reference materials in drug allergy research and diagnostics.
Collapse
Affiliation(s)
- Pedro Quintero-Campos
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Departamento
de Microbiología, Facultad de Medicina, Universidad de València, Av. Blasco Ibáñez 17, 46010 València, Spain
- Hospital
Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento
de Microbiología, Facultad de Medicina, Universidad de València, Av. Blasco Ibáñez 17, 46010 València, Spain
- Hospital
Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain
| | - Ángel Maquieira
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
- Unidad
Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Av. de Fernando Abril Martorell,
106, 46026 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 Valencia, Spain
| | - Sergi Morais
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
- Unidad
Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Av. de Fernando Abril Martorell,
106, 46026 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|