1
|
Mao YQ, Jahanshahi S, Malty R, Van Ommen DAJ, Wan Y, Morey TM, Chuang SHW, Pavlova V, Ahmed C, Dahal S, Lin F, Mangos M, Nurtanto J, Song Y, Been T, Christie-Holmes N, Gray-Owen SD, Babu M, Wong AP, Batey RA, Attisano L, Cochrane A, Houry WA. Targeting protein homeostasis with small molecules as a strategy for the development of pan-coronavirus antiviral therapies. Commun Biol 2024; 7:1460. [PMID: 39511285 PMCID: PMC11543989 DOI: 10.1038/s42003-024-07143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
The COVID-19 pandemic has created a global health crisis, with challenges arising from the ongoing evolution of the SARS-CoV-2 virus, the emergence of new strains, and the long-term effects of COVID-19. Aiming to overcome the development of viral resistance, our study here focused on developing broad-spectrum pan-coronavirus antiviral therapies by targeting host protein quality control mechanisms essential for viral replication. Screening an in-house compound library led to the discovery of three candidate compounds targeting cellular proteostasis. The three compounds are (1) the nucleotide analog cordycepin, (2) a benzothiozole analog, and (3) an acyldepsipeptide analog initially developed as part of a campaign to target the mitochondrial ClpP protease. These compounds demonstrated dose-dependent efficacy against multiple coronaviruses, including SARS-CoV-2, effectively inhibiting viral replication in vitro as well as in lung organoids. Notably, the compounds also showed efficacy against SARS-CoV-2 delta and omicron strains. As part of this work, we developed a BSL2-level cell-integrated SARS-CoV-2 replicon, which could serve as a valuable tool for high-throughput screening and studying intracellular viral replication. Our study should aid in the advancement of antiviral drug development efforts.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Shahrzad Jahanshahi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Trevor M Morey
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Veronika Pavlova
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Choudhary Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Subha Dahal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Funing Lin
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Maria Mangos
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Yuetong Song
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Terek Been
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natasha Christie-Holmes
- Toronto High Containment Facility, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Toronto High Containment Facility, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Robert A Batey
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Newton JD, Song Y, Park S, Kanagarajah KR, Wong AP, Young EWK. Tunable In Situ Synthesis of Ultrathin Extracellular Matrix-Derived Membranes in Organ-on-a-Chip Devices. Adv Healthc Mater 2024; 13:e2401158. [PMID: 38587309 DOI: 10.1002/adhm.202401158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Thin cell culture membranes in organ-on-a-chip (OOC) devices are used to model a wide range of thin tissues. While early and most current platforms use microporous or fibrous elastomeric or thermoplastic membranes, there is an emerging class of devices using extra-cellular matrix (ECM) protein-based membranes to improve their biological relevance. These ECM-based membranes present physiologically relevant properties, but they are difficult to integrate into OOC devices due to their relative fragility. Additionally, the specialized fabrication methods developed to date make comparison between methods difficult. This work presents the development and characterization of a method to produce ultrathin matrix-derived membranes (UMM) in OOC devices that requires only a preassembled thermoplastic device and a micropipette, decoupling the device and UMM fabrication processes. Control over the thickness and permeability of the UMM is demonstrated, along with integration of the UMM in a device enabling high-resolution on-chip microscopy. The reliability of the UMM fabrication method is leveraged to develop a medium-throughput well-plate format device with 32 independent UMM-integrated samples. Finally, proof-of-concept cell culture experiments are demonstrated. Due to its simplicity and controllability, the presented method has the potential to overcome technical barriers preventing wider adoption of physiologically relevant ECM-based membranes in OOC devices.
Collapse
Affiliation(s)
- Jeremy D Newton
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Yuetong Song
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 656 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Road, Toronto, ON, M5S 1A8, Canada
| | - Siwan Park
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Kayshani R Kanagarajah
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 656 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Road, Toronto, ON, M5S 1A8, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 656 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Road, Toronto, ON, M5S 1A8, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
3
|
Quach H, Farrell S, Wu MJM, Kanagarajah K, Leung JWH, Xu X, Kallurkar P, Turinsky AL, Bear CE, Ratjen F, Kalish B, Goyal S, Moraes TJ, Wong AP. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. Nat Commun 2024; 15:5898. [PMID: 39003323 PMCID: PMC11246468 DOI: 10.1038/s41467-024-50281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.
Collapse
Affiliation(s)
- Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Spencer Farrell
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Ming Jia Michael Wu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kayshani Kanagarajah
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Wai-Hin Leung
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaoqiao Xu
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prajkta Kallurkar
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine E Bear
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Kalish
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Demchenko A, Belova L, Balyasin M, Kochergin-Nikitsky K, Kondrateva E, Voronina E, Pozhitnova V, Tabakov V, Salikhova D, Bukharova T, Goldshtein D, Kondratyeva E, Kyian T, Amelina E, Zubkova O, Popova O, Ozharovskaia T, Lavrov A, Smirnikhina S. Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research. Front Cell Dev Biol 2024; 12:1336392. [PMID: 38737127 PMCID: PMC11082282 DOI: 10.3389/fcell.2024.1336392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR). We derived hiBCs from two healthy cell lines and three cell lines with cystic fibrosis (CF). The obtained hiBCs, expressing basal cell markers (NGFR, KRT5, and TP63), could differentiate into lung organoids (LOs). We demonstrated that LOs derived from hiBCs can assess cystic fibrosis transmembrane conductance regulator (CFTR) channel function using the forskolin-induced swelling (FIS) assay. We also carried out non-viral (electroporation) and viral (recombinant adeno-associated virus (rAAV)) serotypes 6 and 9 and recombinant adenovirus (rAdV) serotype 5 transgene delivery to hiBCs and showed that rAAV serotype 6 is most effective against hiBCs, potentially applicable for gene therapy research.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Lyubava Belova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Moscow, Russia
| | | | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina Voronina
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Victoria Pozhitnova
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moscow, Russia
| | - Diana Salikhova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana Bukharova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry Goldshtein
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Kondratyeva
- Scientific and Clinical Department of Cystic Fibrosis, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana Kyian
- Scientific and Clinical Department of Cystic Fibrosis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, Moscow, Russia
| | - Olga Zubkova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Popova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Ozharovskaia
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
5
|
Genome-engineering technologies for modeling and treatment of cystic fibrosis. Adv Med Sci 2023; 68:111-120. [PMID: 36917892 DOI: 10.1016/j.advms.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by defects in the CF transmembrane conductance regulator (CFTR) protein. Due to the genetic nature of the disease, interventions in the genome can target any underlying alterations and potentially provide permanent disease resolution. The current development of gene-editing tools, such as designer nuclease technology capable of genome correction, holds great promise for both CF and other genetic diseases. In recent years, Cas9-based technologies have enabled the generation of genetically defined human stem cell and disease models based on induced pluripotent stem cells (iPSC). In this article, we outline the potential and possibilities of using CRISPR/Cas9-based gene-editing technology in CF modeling.
Collapse
|
6
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|