1
|
Rams TE, Contreras A, Slots J. Aggressive periodontitis in southwestern American Indian adolescents. J Periodontol 2024; 95:594-602. [PMID: 37910464 DOI: 10.1002/jper.23-0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND This study determined the prevalence of aggressive (molar-incisor pattern) (Ag/MI) periodontitis and assessed the associated subgingival bacterial-herpesvirus microbiota in Pueblo Indian adolescents in the southwestern United States. METHODS The study included 240 Pueblo Indian adolescents, aged 13-20 years old, residing in three Rio Grande River villages in New Mexico and the Hopi Pueblo reservation in Arizona. Adolescents with Ag/MI periodontitis or periodontal health provided subgingival samples for culture of bacterial pathogens and for polymerase chain reaction detection of periodontal herpesviruses. RESULTS Ag/MI periodontitis was detected in 22 (9.2%) Pueblo Indian adolescents, with 21 exhibiting a localized molar-incisor breakdown pattern. Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and other red/orange complex bacterial pathogens predominated in Ag/MI periodontitis, whereas periodontal health yielded mainly viridans streptococci and Actinomyces species. Periodontal herpesviruses demonstrated a 3.5 odds ratio relationship with Ag/MI periodontitis. The only adolescent with generalized Ag/MI periodontitis harbored viral co-infection by cytomegalovirus plus Epstein-Barr virus Type 1, in addition to A. actinomycetemcomitans, P. gingivalis, and several other periodontopathic bacteria. CONCLUSIONS Pueblo Indian adolescents showed an unusually high prevalence of early-age Ag/MI periodontitis predominated by periodontopathic bacteria and herpesviruses suspected to be major etiologic agents of the disease.
Collapse
Affiliation(s)
- Thomas E Rams
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, Pennsylvania, USA
| | - Adolfo Contreras
- Periodontal Medicine Research Group, Department of Periodontology, Universidad del Valle School of Dentistry, Cali, Colombia
| | - Jørgen Slots
- Division of Periodontology and Diagnostic Sciences, University of Southern California School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
2
|
Slots J, Rams TE. Herpesvirus-Bacteria pathogenic interaction in juvenile (aggressive) periodontitis. A novel etiologic concept of the disease. Periodontol 2000 2024; 94:532-538. [PMID: 37345343 DOI: 10.1111/prd.12501] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Localized juvenile (aggressive) periodontitis starts at puberty in otherwise healthy individuals and involves the proximal surfaces of permanent incisors and first molars. The disease destroys a sizeable amount of periodontal bone within a few months despite minimal dental plaque and gingival tissue inflammation. Cytomegalovirus and Epstein-Barr virus, as well as the two main periodontopathic bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, are linked to juvenile periodontitis. Juvenile periodontitis-affected teeth show cementum hypoplasia. We hypothesize that an active herpesvirus infection, at the time of root formation, hampers cementum formation and, at puberty, herpesvirus reactivation triggers an upgrowth of bacterial pathogens which produce rapid periodontal destruction on teeth with a defective periodontium. A pathogenic interaction between active herpesviruses and bacterial pathogens can potentially explain the etiology and incisor-first molar destructive pattern of juvenile periodontitis. Effective treatment of juvenile periodontitis may target the herpesvirus-bacteria co-infection.
Collapse
Affiliation(s)
- Jørgen Slots
- Division of Periodontology and Diagnostic Sciences, University of Southern California School of Dentistry, Los Angeles, California, USA
| | - Thomas E Rams
- Department of Periodontology and Oral Implantology, and Oral Microbiology Testing Service Laboratory, Temple University School of Dentistry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
4
|
Khalil W, Alaa El Din F, Jaffal M, Kanj AEH, Nabbouh A, Kurban M, Rahal EA, Matar GM. Prevalence of Human Papillomavirus (HPV)-16 in Different Dental Infections in the Lebanese Population. Cureus 2023; 15:e38809. [PMID: 37303381 PMCID: PMC10251111 DOI: 10.7759/cureus.38809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Dental infections, which are the main cause of tooth loss, are known to be caused by bacteria. However, recent research suggests that other organisms, such as viruses, may also play a role. In this study, we aim to detect the presence of human papillomavirus (HPV)-16 and assess its prevalence in tissues infected with various dental infections, including aggressive and chronic periodontitis, pericoronitis, and periapical infection, as well as healthy gingival tissues, saliva, and gingival crevicular fluid, for comparison. METHODS A cross-sectional study including 124 adult healthy patients presenting with dental infections requiring dental extractions were conducted to assess the prevalence of HPV-16 in saliva, infected, and healthy tissues using quantitative polymerase chain reaction (PCR) tests. Samples were collected and a categorical scale was used for the prevalence. Statistical analyses were performed using Chi-square for the prevalence of HPV-16. RESULTS Among the HPV-16-positive PCR cases, the prevalence of HPV-16 was highest in periapical infection tissues as compared to chronic periodontitis, aggressive periodontitis, pericoronitis, and control tissues. CONCLUSION The prevalence of HPV-16 in periapical infection samples was the highest among the studied dental infection samples. Thus, a primary conclusion can be drawn about the presence of an association between HPV-16 and the occurrence of periapical infection.
Collapse
Affiliation(s)
- Wael Khalil
- Oral and Maxillofacial Surgery Department, Lebanese University, Beirut, LBN
| | - Ferdos Alaa El Din
- Department of Microbiology, College of Dentistry, Al-Ayen University, Thi-Qar, IRQ
| | - Marwa Jaffal
- Restorative and Esthetic Dentistry, Saint Joseph University, Beirut, LBN
| | - Abd El Hadi Kanj
- Department of Orthodontics, College of Dentistry, Al-Ayen University, Thi-Qar, IRQ
| | - Ali Nabbouh
- Office of Graduate Studies in Biomedical Sciences, American University of Beirut, Beirut, LBN
| | - Mazen Kurban
- Dermatopathology, American University of Beirut Medical Center, Beirut, LBN
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, LBN
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, LBN
| |
Collapse
|
5
|
Teles F, Collman RG, Mominkhan D, Wang Y. Viruses, periodontitis, and comorbidities. Periodontol 2000 2022; 89:190-206. [PMID: 35244970 DOI: 10.1111/prd.12435] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seminal studies published in the 1990s and 2000s explored connections between periodontal diseases and systemic conditions, revealing potential contributions of periodontal diseases in the initiation or worsening of systemic conditions. The resulting field of periodontal medicine led to the publication of studies indicating that periodontal diseases can influence the risk of systemic conditions, including adverse pregnancy outcomes, cardiovascular and respiratory diseases, as well as Alzheimer disease and cancers. In general, these studies hypothesized that the periodontal bacterial insult and/or the associated proinflammatory cascade could contribute to the pathogenesis of these systemic diseases. While investigations of the biological basis of the connections between periodontal diseases and systemic conditions generally emphasized the bacteriome, it is also biologically plausible, under an analogous hypothesis, that other types of organisms may have a similar role. Human viruses would be logical "suspects" in this role, given their ubiquity in the oral cavity, association with periodontal diseases, and ability to elicit strong inflammatory response, compromise immune responses, and synergize with bacteria in favor of a more pathogenic microbial consortium. In this review, the current knowledge of the role of viruses in connecting periodontal diseases and systemic conditions is examined. We will also delve into the mechanistic basis for such connections and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, School of Dental Medicine, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dana Mominkhan
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Wu CY, Yu ZY, Hsu YC, Hung SL. Enhancing production of herpes simplex virus type 1 in oral epithelial cells by co-infection with Aggregatibacter actinomycetemcomitans. J Formos Med Assoc 2022; 121:1841-1849. [PMID: 35144835 DOI: 10.1016/j.jfma.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND/PURPOSE The association between herpetic/bacterial co-infection and periodontal diseases has been reported. However, how interactions between herpesviruses and periodontal bacteria dampen periodontal inflammation is still unclear. This study determined effects of co-infection with oral bacteria, including Streptococcus sanguinis, Fusobacterium nucleatum or Aggregatibacter actinomycetemcomitans, in herpes simplex virus type 1 (HSV-1)-infected oral epithelial cells. METHODS Cell viability was determined by detection the activity of mitochondrial dehydrogenase. Viral production was measured using the plaque assay. Levels of bacterial and viral DNA were determined by real-time polymerase chain reaction. Secretion of interleukin (IL)-6 and IL-8 was measured using the enzyme-linked immunosorbent assay. RESULTS Viability was not further reduced by bacterial co-infection in HSV-1-infected cells. Co-infection with HSV-1 and S. sanguinis or F. nucleatum reduced the viral yield whereas co-infection with HSV-1 and A. actinomycetemcomitans significantly enhanced the viral yield in oral epithelial cells. The enhancing effect of A. actinomycetemcomitans was not affected by bacterial heat-inactivation. Co-infection with HSV-1/A. actinomycetemcomitans increased intracellular levels of both viral and bacterial DNA. Secretion of IL-6 and IL-8 stimulated by A. actinomycetemcomitans infection was partly reduced by co-infection with HSV-1 in oral epithelial cells. CONCLUSION In contrast to S. sanguinis and F. nucleatum, A. actinomycetemcomitans enhanced the yield of HSV-1. Either HSV-1 or A. actinomycetemcomitans may be benefited from co-infection, in aspects of increases in production of viral and bacterial DNA as well as reductions in cytokine secretion. These findings echoed with previous clinical studies showing co-infection of HSV and A. actinomycetemcomitans in patients with aggressive periodontitis.
Collapse
Affiliation(s)
- Ching-Yi Wu
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zhu-Yun Yu
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chun Hsu
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shan-Ling Hung
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Community Dentistry, Zhong-Xiao Branch, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus in a Kenyan Maasai Adolescent Population and Inhibition of Leukotoxic Activity by Herbal Plants Used as Part of Oral Hygiene Procedures. J Clin Med 2021; 10:jcm10225402. [PMID: 34830683 PMCID: PMC8621963 DOI: 10.3390/jcm10225402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A virulent genotype (JP2) of the periodonto-pathogen, Aggregatibacter actinomycetemcomitans (Aa), is widespread in North and West Africa, while its presence in East Africa has not been thoroughly investigated. This JP2 genotype is associated with periodontitis in adolescents and has a high leukotoxicity. The aim of the study was to examine the prevalence of Aa and its JP2 genotype, the prevalence of the oral, commensal Aggregatibacter aphrophilus in a Maasai adolescent population, and the effect of herbal plants for inhibition of leukotoxicity. METHODS A total of 284 adolescents from Maasai Mara, Kenya, underwent an oral examination and microbial sampling. The presence of Aa and A. aphrophilus was analyzed by quantitative PCR and cultivation (the 58 samples collected at the last day of field study). The collected Aa strains were characterized and leukotoxin promoter typed. Additionally, herbal plants commonly used for oral hygiene were assessed for the inhibition of leukotoxicity. RESULTS AND CONCLUSIONS The prevalence of Aa in stimulated whole saliva was high (71.8%), with the JP2 genotype detected in one individual, and A. aphrophilus in 99% of the sampled individuals. The commonly used herbal plant, Warburgia ugandensis, inactivated Aa leukotoxicity. The Aa virulence might be reduced through use of W. ugandensis and the high levels of A. aphrophilus.
Collapse
|
8
|
Maulani C, Auerkari EI, C. Masulili SL, Soeroso Y, Djoko Santoso W, S. Kusdhany L. Association between Epstein-Barr virus and periodontitis: A meta-analysis. PLoS One 2021; 16:e0258109. [PMID: 34618843 PMCID: PMC8496828 DOI: 10.1371/journal.pone.0258109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Previous studies have found that Epstein-Barr virus (EBV) is associated with periodontitis, though some controversy remains. This meta-analysis aimed to clarify and update the relationship between EBV and periodontitis as well as clinical parameters. Methods A comprehensive search was conducted in the PubMed and Scopus databases in December 2020. Original data were extracted according to defined inclusion and exclusion criteria. Outcomes were analyzed, including overall odds ratios (ORs) and 95% confidence intervals (CIs). A random-effects model was used, and publication bias was assessed by Egger’s and Begg’s tests. Sensitivity analysis was used to evaluate the stability of the outcome. Results Twenty-six studies were included in the present meta-analysis, involving 1354 periodontitis patients and 819 healthy controls. The included studies mostly showed high quality. The overall quantitative synthesis for the association between EBV and periodontitis was an increased odds ratio when subgingival EBV was detected OR = 7.069, 95% CI = 4.197–11.905, P<0.001). The results of subgroup analysis suggested that the association of EBV with periodontitis was significant in Asian, European, and American populations (P<0.001; P = 0.04; P = 0.003, respectively) but not in African populations (P = 0.29). Subgroup analysis by sample type showed that subgingival plaque (SgP), tissue and gingival crevicular fluid GCF were useful for EBV detection (P<0.001). EBV detection amplification methods included nested PCR, multiplex PCR and PCR (P<0.001; P = 0.05, P<0.001, respectively), but EBV detection by real-time PCR and loop-mediated isothermal amplification presented no significant result (P = 0.06; P = 0.3, respectively). For the clinical parameters of periodontitis, pocket depth (PD) and bleeding of probing (BOP) percentages were higher in the EBV-positive sites than in the EBV-negative sites (MD 0.47 [0.08, 0.85], P = 0.02; MD 19.45 [4.47, 34.43], P = 0.01). Conclusions A high frequency of EBV detection is associated with an increased risk of periodontitis. The EBV association was particularly significant in all populations except in African populations. Subgigival plaque (SgP), tissue and GCF were not significantly different useful material for detecting EBV in periodontitis. Nested PCR and multiplex PCR are reliable methods for this purpose. In the presence of EBV, PD and BOP are reliable clinical parameters for gingival inflammation. However, some caution in such interpretation is justified due to heterogeneity among studies. A suggested extension could assess the parallel influence of other human herpesviruses.
Collapse
Affiliation(s)
- Chaerita Maulani
- Faculty of Dentistry, Doctoral Program, Universitas Indonesia, Jakarta, Indonesia
| | - Elza Ibrahim Auerkari
- Faculty of Dentistry, Department of Oral Biology, Universitas Indonesia, Jakarta, Indonesia
- * E-mail:
| | - Sri Lelyati C. Masulili
- Faculty of Dentistry, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Yuniarti Soeroso
- Faculty of Dentistry, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Widayat Djoko Santoso
- Faculty of Medicine, Department of Internal Medicine in Tropical Infection, Universitas Indonesia, Jakarta, Indonesia
| | - Lindawati S. Kusdhany
- Faculty of Dentistry, Department of Prosthodontics, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
9
|
Abstract
Mediators of the initiation, development, and recurrence of periodontitis include the oral microbiome embedded in subgingival plaque and the host immune response to a dysbiosis within this dynamic and complex microbial community. Although mediators have been studied extensively, researchers in the field have been unable to fully ascribe certain clinical presentations of periodontitis to their nature. Emergence of high-throughput sequencing technologies has resulted in better characterization of the microbial oral dysbiosis that extends beyond the extensively studied putative bacterial periodontopathogens to a shift in the oral virome composition during disease conditions. Although the biological dark matter inserted by retroviruses was once believed to be nonfunctional, research has revealed that it encodes historical viral-eukaryotic interactions and influences host development. The objective of this review is to evaluate the proposed association of herpesviruses to the etiology and pathogenesis of periodontal disease and survey the highly abundant prokaryotic viruses to delineate their potential roles in biofilm dynamics, as well as their interactions with putative bacterial periodontopathogens and eukaryotic cells. The findings suggest that potential novel periodontal therapies targeting or utilizing the oral virome can alleviate certain clinical presentations of periodontitis. Perhaps it is time to embrace the viral dark matter within the periodontal environment to fully comprehend the pathogenesis and systemic implications of periodontitis.
Collapse
Affiliation(s)
- April Martínez
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ryutaro Kuraji
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Yvonne L. Kapila
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
10
|
The Role of Coinfections in the EBV-Host Broken Equilibrium. Viruses 2021; 13:v13071399. [PMID: 34372605 PMCID: PMC8310153 DOI: 10.3390/v13071399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a well-adapted human virus, and its infection is exclusive to our species, generally beginning in the childhood and then persisting throughout the life of most of the affected adults. Although this infection generally remains asymptomatic, EBV can trigger life-threatening conditions under unclear circumstances. The EBV lifecycle is characterized by interactions with other viruses or bacteria, which increases the probability of awakening its pathobiont capacity. For instance, EBV infects B cells with the potential to alter the germinal center reaction (GCR)—an adaptive immune structure wherein mutagenic-driven processes take place. HIV- and Plasmodium falciparum-induced B cell hyperactivation also feeds the GCR. These agents, along with the B cell tropic KSHV, converge in the ontogeny of germinal center (GC) or post-GC lymphomas. EBV oral transmission facilitates interactions with local bacteria and HPV, thereby increasing the risk of periodontal diseases and head and neck carcinomas. It is less clear as to how EBV is localized in the stomach, but together with Helicobacter pylori, they are known to be responsible for gastric cancer. Perhaps this mechanism is reminiscent of the local inflammation that attracts different herpesviruses and enhances graft damage and chances of rejection in transplanted patients. In this review, we discussed the existing evidence suggestive of EBV possessing the potential to synergize or cooperate with these agents to trigger or worsen the disease.
Collapse
|
11
|
Lee YY, Li MJ, Yu ZY, Hung SL. Modulation of proinflammatory mediators by viruses-bacteria synergism in human osteoblasts-an in vitro study. J Formos Med Assoc 2021; 121:841-847. [PMID: 34253436 DOI: 10.1016/j.jfma.2021.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND/PURPOSE Viruses-bacteria synergistic interaction is associated with destructive periodontal diseases. However, the underlying mechanism for tissue destruction is not fully elucidated. In this study, lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS) and polyinosinic-polycytidylic acid (poly I:C) were used to simulate bacteria and viruses, respectively. The possible combined effects of both molecular patterns on secretion of interleukin (IL)-6 and prostaglandin E2 (PGE2) from osteoblasts were determined. The effects of povidone-iodine (PVP-I) on the secretion of IL-6 and PGE2 were also examined. METHODS Viability of treated osteoblastic cells (MG63) was examined by detection the mitochondrial dehydrogenase activity. Secretion of IL-6 and PGE2 was detected using the enzyme-linked immunosorbent assay (ELISA). Mitogen-activated protein kinases (MAPKs) and cyclooxygenase-2 (COX-2) were determined using the Western blotting analysis. RESULTS Pg-LPS or poly I:C significantly enhanced the production of IL-6 and PGE2 in MG63 cells. The additive/synergistic effects of Pg-LPS/poly I:C on production of IL-6 and PGE2 were evident. The levels of phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) and expression of COX-2 protein were enhanced by Pg-LPS and/or poly I:C. On the other hand, the level of phosphorylation of extracellular signal-regulated kinase (ERK) was reduced by Pg-LPS and/or poly I:C. The stimulatory secretion of PGE2 by poly I:C was significantly reduced by PVP-I. CONCLUSION Concomitant infection of viruses and bacteria may be potentially harmful to the tooth supporting tissues by production of proinflammatory mediators. The results suggest the potential anti-inflammatory effect of PVP-I on bacterial or viral infection.
Collapse
Affiliation(s)
- Ya-Yun Lee
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Ju Li
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhu-Yun Yu
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shan-Ling Hung
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Kitagawa M, Ouhara K, Oka H, Sakamoto S, Yamane Y, Kashiwagi A, Kanamoto R, Miyauchi M, Nagamine K. Selective and easy detection of the Porphyromonas gingivalis fimA type II and IV genes by loop-mediated isothermal amplification. J Microbiol Methods 2021; 185:106228. [PMID: 33878444 DOI: 10.1016/j.mimet.2021.106228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
Porphyromonas gingivalis fimbrillin (fimA) type II and IV, the definitive factors for periodontitis, are also found to be associated with systemic diseases. To detect the fimA type II and IV genes easily and rapidly, we used the loop-mediated isothermal amplification (LAMP) method. The LAMP method showed high specificity as DNA from the P. gingivalis HW24D1 strain could only be amplified by the type II-specific primers and that from the W83 strain could only be amplified by the type IV-specific primers. Pathogens, namely, Streptococcus sobrinus, S. mutans, and Candida species, lack the type II and IV genes, and hence, were not detected by the LAMP reaction. Both bacterial cells and purified DNA could be used in the LAMP reaction. The LAMP reaction was highly sensitive and both type II and type IV genes could be detected in 1000 DNA molecules. In the bacterial suspensions of HW24D1 and W83 strains, type II and type IV genes, respectively, could be detected in 100 bacterial cells. We examined the type II and type IV genes in the dental plaques from 22 P. gingivalis-positive patients using the LAMP method. Only one person was found to be positive for the type II gene (4.5%). For the type IV gene, 3 positive cases (13.6%) were identified. Moreover, type II and type IV genes could be detected simultaneously using a multiplex amplification primer of fimA type II and type IV, under visible light. Thus, we established a selective and easy method to detect P. gingivalis fimA type II and IV genes using LAMP.
Collapse
Affiliation(s)
- Masae Kitagawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan.
| | - Kazuhisa Ouhara
- Department of Periodontology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroko Oka
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan; Center for Cause of Death Investigation Research & Education, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichi Sakamoto
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuka Yamane
- Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
| | - Ayaka Kashiwagi
- Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
| | - Rinka Kanamoto
- Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
| | - Mutusmi Miyauchi
- Department of Oral Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kentaro Nagamine
- Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
13
|
Lenkowski M, Nijakowski K, Kaczmarek M, Surdacka A. The Loop-Mediated Isothermal Amplification Technique in Periodontal Diagnostics: A Systematic Review. J Clin Med 2021; 10:1189. [PMID: 33809163 PMCID: PMC8000232 DOI: 10.3390/jcm10061189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022] Open
Abstract
The course of periodontal disease is affected by many factors; however, the most significant are the dysbiotic microflora, showing different pathogenicity levels. Rapid colonization in the subgingival environment can radically change the clinical state of the periodontium. This systematic review aims to present an innovative technique of loop-mediated isothermal amplification for rapid panel identification of bacteria in periodontal diseases. The decisive advantage of the loop-mediated isothermal amplification (LAMP) technique in relation to molecular methods based on the identification of nucleic acids (such as polymerase chain reaction (PCR or qPCR) is the ability to determine more pathogens simultaneously, as well as with higher sensitivity. In comparison with classical microbiological seeding techniques, the use of the LAMP method shortens a few days waiting time to a few minutes, reducing the time necessary to identify the species and determine the number of microorganisms. The LAMP technology requires only a small hardware base; hence it is possible to use it in outpatient settings. The developed technique provides the possibility of almost immediate assessment of periodontal status and, above all, risk assessment of complications during the treatment (uncontrolled spread of inflammation), which can certainly be of key importance in clinical work.
Collapse
Affiliation(s)
- Marcin Lenkowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
14
|
Nędzi-Góra M, Górska R, Górski B. Is the progression rate of periodontitis related to subgingival biofilm composition or gingival crevicular fluid IL-1β and MMP-8 concentrations? Cent Eur J Immunol 2021; 45:425-432. [PMID: 33658891 PMCID: PMC7882403 DOI: 10.5114/ceji.2020.101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
AIM OF THE STUDY To analyze the composition of subgingival biofilm and to assess the concentration of IL-1 and MMP-8 in gingival crevicular fluid (GCF) from deep periodontal pockets in patients with severe periodontitis to determine whether the presence of specific microbial species or the severity of the host's immune response can be helpful in assessing the dynamics of disease. MATERIAL AND METHODS The study included 30 individuals with periodontitis Grade B and 19 subjects with periodontitis Grade C. Quantitative and qualitative microbiological analysis of flora in pockets ≥ 7 mm was performed for the presence of selected periopathogens of the orange, red complex and Aggregatibacter actinomycetemcomitans using real-time PCR. The concentrations of IL-1 and MMP-8 in GCF were evaluated with the ELISA method. RESULTS There were no differences in the composition of the subgingival biofilm depending on the diagnosis. The concentration of MMP-8 in GCF was significantly higher in periodontitis Grade C than in periodontitis Grade B (61 ng/µl and 37 ng/µl respectively, p = 0.039). The concentration of IL-1β was similar in both groups. No significant correlations were observed between the occurrence of individual periopathogens and concentrations of MMP-8 and IL-1β depending on the diagnosis. CONCLUSIONS Periodontitis grade may not be distinguished according to microbial analysis of subgingival biofilm or to concentration of IL-1β in GCF. On the other hand, higher concentrations of MMP-9 in GCF from deep pockets may be helpful in detecting subjects particularly prone to occurrence and rapid progress of periodontitis.
Collapse
|
15
|
Tonoyan L, Chevalier M, Vincent-Bugnas S, Marsault R, Doglio A. Detection of Epstein-Barr Virus in Periodontitis: A Review of Methodological Approaches. Microorganisms 2020; 9:microorganisms9010072. [PMID: 33383930 PMCID: PMC7823867 DOI: 10.3390/microorganisms9010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/30/2022] Open
Abstract
Periodontitis, an inflammatory condition that affects the structures surrounding the tooth eventually leading to tooth loss, is one of the two biggest threats to oral health. Beyond oral health, it is associated with systemic diseases and even with cancer risk. Obviously, periodontitis represents a major global health problem with significant social and economic impact. Recently, a new paradigm was proposed in the etiopathogenesis of periodontitis involving a herpesviral–bacterial combination to promote long-term chronic inflammatory disease. Periodontitis as a risk factor for other systemic diseases can also be better explained based on viral–bacterial etiology. Significant efforts have brought numerous advances in revealing the links between periodontitis and Epstein–Barr virus (EBV), a gamma herpesvirus ubiquitous in the adult human population. The strong evidence from these studies may contribute to the advancement of periodontitis research and the ultimate control of the disease. Advancing the periodontitis research will require implementing suitable methods to establish EBV involvement in periodontitis. This review evaluates and summarizes the existing methods that allow the detection and diagnosis of EBV in periodontitis (also applicable in a more general way to other EBV-related diseases), and discusses the feasibility of the application of innovative emerging technologies.
Collapse
Affiliation(s)
- Lilit Tonoyan
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Correspondence: or
| | - Marlène Chevalier
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
| | - Séverine Vincent-Bugnas
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| | - Robert Marsault
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
| | - Alain Doglio
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, 06101 Nice, France
| |
Collapse
|
16
|
Hbibi A, Sikkou K, Khedid K, El Hamzaoui S, Bouziane A, Benazza D. Antimicrobial activity of honey in periodontal disease: a systematic review. J Antimicrob Chemother 2020; 75:807-826. [PMID: 31977042 DOI: 10.1093/jac/dkz527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Honey has shown positive antimicrobial and anti-inflammatory actions in several dermatological studies; however, it is unclear if it could be effective in the treatment of periodontal disease. OBJECTIVES To answer the question: Does honey have antimicrobial activity against periodontopathogens? METHODS Six electronic databases were screened from initiation to 31 January 2019 for randomized clinical trials (RCTs) and controlled in vitro studies exploring the antimicrobial effect of honey against periodontopathogens. Honey's botanical origin, periopathogens that showed microbial susceptibility to honey, MICs, microbial growth conditions, control product and clinical follow-up were the main investigated outcomes. The risk of bias (RoB) of included RCTs was assessed using the Cochrane Collaboration RoB tool. The RoB of in vitro studies was evaluated based on the Sarkis-Onofre judgement model adapted to the context of honey. RESULTS A total of 1448 publications were found as search results in the screened databases. Sixteen eligible papers were included based on predetermined inclusion criteria. Retained studies included 5 RCTs and 11 in vitro controlled trials. Manuka and multifloral honeys were the most studied varieties. The tested honeys showed a significant antimicrobial action, with different MICs, against eight periopathogens. Four of the five RCTs showed a high RoB, while 4 of the 11 retained in vitro studies showed a medium RoB. CONCLUSIONS Honey showed a significant antimicrobial activity against all targeted periopathogens. Additional experiments are required to explore the entire antimicrobial spectrum of honey towards all pathogens involved in periodontal disease.
Collapse
Affiliation(s)
- Abdelhadi Hbibi
- Laboratory of Oral Microbiology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, Morocco.,Centre des Soins Dentaires, Hôpital Provincial Moulay Abdellah, Salé, Morocco
| | - Khadija Sikkou
- Centre des Soins Dentaires, Hôpital Provincial Moulay Abdellah, Salé, Morocco
| | - Khadija Khedid
- Department of Microbiology, National Institute of Health, Rabat, Morocco
| | - Sakina El Hamzaoui
- Department of Microbiology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Amal Bouziane
- Department of Periodontology, Faculty of Dental Medicine, Biostatistical Clinical and Epidemiological Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Driss Benazza
- Department of Periodontology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
17
|
Botero JE, Rodríguez‐Medina C, Jaramillo‐Echeverry A, Contreras A. Association between human cytomegalovirus and periodontitis: A systematic review and meta‐analysis. J Periodontal Res 2020; 55:551-558. [DOI: 10.1111/jre.12742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Carolina Rodríguez‐Medina
- Facultad de Odontología Universidad de Antioquia Medellín Colombia
- Facultad de Odontología Universidad Cooperativa de Colombia Medellín Colombia
| | - Adriana Jaramillo‐Echeverry
- UNICOC, Colegio Odontológico Colombiano Cali Colombia
- Escuela de Odontología Universidad del Valle Cali Colombia
| | | |
Collapse
|
18
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Abstract
Four billion individuals worldwide have a history of periodontitis, with the poorest people in society most affected. Periodontitis can lead to unsightly drifting of teeth and tooth loss that may interfere with the wellbeing of daily living and has also been linked to at least 57 medical diseases and disabilities. The etiology of severe periodontitis includes active herpesviruses, specific bacterial pathogens, and destructive immune responses, but herpesviruses seem to be the major pathogenic determinant. Periodontal herpesviruses that disseminate via the systemic circulation to nonoral sites may represent a major link between periodontitis and systemic diseases. Current treatment of periodontitis focuses almost exclusively on bacterial biofilm and will require revision. Periodontal therapy that targets both herpesviruses and bacterial pathogens can provide long-term clinical improvement and potentially reduces the risk of systemic diseases. Molecular diagnostic tests for periodontal pathogens may enable early microbial identification and preemptive therapy. This review details an efficient and reliable anti-infective treatment of severe periodontitis that can be carried out in minimal time with minimal cost.
Collapse
Affiliation(s)
- Jørgen Slots
- School of Dentistry, University of Southern California, Los Angeles, California
| | - Henrik Slots
- University of Nevada at Reno School of Medicine, Reno, Nevada.,St. George's School of Medicine, St. George, Grenada.,Renown Medical Center, Reno, Nevada
| |
Collapse
|
20
|
Pawlaczyk-Kamieńska T, Śniatała R, Batura-Gabryel H, Borysewicz-Lewicka M, Cofta S. Periodontal Status and Subgingival Biofilms in Cystic Fibrosis Adults. Pol J Microbiol 2019; 68:377-382. [PMID: 31880883 PMCID: PMC7256727 DOI: 10.33073/pjm-2019-040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to assess the periodontal status of cystic fibrosis (CF) adult patients and to evaluate whether there is a correlation between the bacterial population of the subgingival biofilm and the health status of the periodontal tissues in this group of adults. The study involved 22 cystic fibrosis adult patients. The periodontal condition was assessed using Plaque Index (PLI), Gingival Index (GI), and Probing Pocket Depth (PPD). The gingival sulcus samples were analyzed by the Real-Time PCR assay (RT-PCR). Majority of patients showed moderate or severe bacterial dental plaque accumulation, but none of them had clinical symptoms of periodontal diseases. RT-PCR showed the presence of periopathogens in 50% of patients. Red complex microorganisms were detected in 9.09%, orange complex in 27.27%, and green complex in 31.82% of the samples analyzed. In cystic fibrosis patients colonized by periopathogens, the periodontal markers were significantly higher in comparison to not colonized by periopathogens patients. Despite the widespread presence of bacterial dental deposits in the cystic fibrosis adult patients examined, none of them has clinical symptoms of periodontal disease; however, the presence of periodontal pathogens in subgingival biofilm may represent a possible risk factor of this disease in the future. An unsatisfactory level of oral hygiene in any patient with cystic fibrosis indicates a need to focus on standards of dental care for such patients.
Collapse
Affiliation(s)
| | - Renata Śniatała
- Department of Paediatric Dentistry, Poznan University of Medical Sciences , Poznan , Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences , Poznan , Poland
| | | | - Szczepan Cofta
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
21
|
Domínguez-Díaz C, García-Orozco A, Riera-Leal A, Padilla-Arellano JR, Fafutis-Morris M. Microbiota and Its Role on Viral Evasion: Is It With Us or Against Us? Front Cell Infect Microbiol 2019; 9:256. [PMID: 31380299 PMCID: PMC6657001 DOI: 10.3389/fcimb.2019.00256] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses are obligate intracellular pathogens that require the protein synthesis machinery of the host cells to replicate. These microorganisms have evolved mechanisms to avoid detection from the host immune innate and adaptive response, which are known as viral evasion mechanisms. Viruses enter the host through skin and mucosal surfaces that happen to be colonized by communities of thousands of microorganisms collectively known as the commensal microbiota, where bacteria have a role in the modulation of the immune system and maintaining homeostasis. These bacteria are necessary for the development of the immune system and to prevent the adhesion and colonization of bacterial pathogens and parasites. However, the interactions between the commensal microbiota and viruses are not clear. The microbiota could confer protection against viral infection by priming the immune response to avoid infection, with some bacterial species being required to increase the antiviral response. On the other hand, it could also help to promote viral evasion of certain viruses by direct and indirect mechanisms, with the presence of the microbiota increasing infection and viruses using LPS and surface polysaccharides from bacteria to trigger immunosuppressive pathways. In this work, we reviewed the interaction between the microbiota and viruses to prevent their entry into host cells or to help them to evade the host antiviral immunity. This review is focused on the influence of the commensal microbiota in the viruses' success or failure of the host cells infection.
Collapse
Affiliation(s)
- Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Alejandra García-Orozco
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Annie Riera-Leal
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Ricardo Padilla-Arellano
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mary Fafutis-Morris
- Centro de Investgación en Inmunología y Dermatología (CIINDE), Zapopan, Mexico.,Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|