• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4639566)   Today's Articles (5529)   Subscriber (50291)
For: Boddien A, Loges B, Junge H, Beller M. Hydrogen generation at ambient conditions: application in fuel cells. ChemSusChem 2008;1:751-758. [PMID: 18686291 DOI: 10.1002/cssc.200800093] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Number Cited by Other Article(s)
1
Guo J, Hu S, Gao Z, Zhang X, Sun S. Carbon-coated silica supported palladium for hydrogen production from formic acid - Exploring the influence of strong metal support interaction. J Colloid Interface Sci 2024;658:468-475. [PMID: 38118193 DOI: 10.1016/j.jcis.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/22/2023]
2
Gkatziouras C, Solakidou M, Louloudi M. Efficient [Fe-Imidazole@SiO2] Nanohybrids for Catalytic H2 Production from Formic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:nano13101670. [PMID: 37242086 DOI: 10.3390/nano13101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
3
Yaacoub L, Dutta I, Werghi B, Chen BWJ, Zhang J, Hamad EA, Ling Ang EP, Pump E, Sedjerari AB, Huang KW, Basset JM. Formic Acid Dehydrogenation via an Active Ruthenium Pincer Catalyst Immobilized on Tetra-Coordinated Aluminum Hydride Species Supported on Fibrous Silica Nanospheres. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
4
Vatsa A, Mishra A, Padhi SK. Monitoring of catalytic dehydrogenation of formic acid by a ruthenium (II) complex through manometry. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
5
Exploring the conversion mechanism of formaldehyde to CO2 and H2 catalyzed by bifunctional ruthenium catalysts: A DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
6
Salman MS, Rambhujun N, Pratthana C, Srivastava K, Aguey-Zinsou KF. Catalysis in Liquid Organic Hydrogen Storage: Recent Advances, Challenges, and Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
7
Vatsa A, Padhi SK. Formic acid dehydrogenation by [Ru(η6-benzene)(L)Cl] catalysts: L = 2-methylquinolin-8-olate and quinolin-8-olate. NEW J CHEM 2022. [DOI: 10.1039/d2nj03121c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Sun X, Li F, Wang Z, An H, Xue W, Wang Y. AgPd Nanoparticles Anchored on TiO 2 Derived from a Titanium Metal–Organic Framework for Efficient Dehydrogenation of Formic Acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
9
Curley JB, Hert C, Bernskoetter WH, Hazari N, Mercado BQ. Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH2CH2PiPr2)2 Pincer Ligand in CO2 Hydrogenation and Formic Acid Dehydrogenation. Inorg Chem 2021;61:643-656. [PMID: 34955015 DOI: 10.1021/acs.inorgchem.1c03372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
10
Tsai H, Lien W, Liao C, Chen Y, Huang S, Chou F, Chang C, Yu JK, Kao Y, Wu T. Efficient and Reversible Catalysis of Formic Acid‐Carbon Dioxide Cycle Using Carbamate‐Substituted Ruthenium‐Dithiolate Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
11
Vatsa A, Padhi SK. Dehydrogenation of Formic Acid by a Ru II Half Sandwich Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202102735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
12
Zhou C, Zhao Y, Tan F, Guo Y, Li Y. Utilization of renewable formic acid from lignocellulosic biomass for the selective hydrogenation and/or N‐methylation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
13
Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. CHEMSUSCHEM 2021;14:2655-2681. [PMID: 33963668 DOI: 10.1002/cssc.202100602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
14
Wang Q, Xia Y, Cheng F, Chen Z, Wang Y, Zhu X, Qin L, Zheng Z. Formic Acid Dehydrogenation for Hydrogen Production Promoted by Grubbs and Hoveyda‐Grubbs Catalysts †. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
15
Dehydrogenation of Formic Acid in Liquid Phase over Pd Nanoparticles Supported on Reduced Graphene Oxide Sheets. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09332-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
16
Bahuguna A, Sasson Y. Formate-Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage. CHEMSUSCHEM 2021;14:1258-1283. [PMID: 33231357 DOI: 10.1002/cssc.202002433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Indexed: 05/19/2023]
17
Minami Y, Amao Y. Cationic poly-l-amino acid-enhanced selective hydrogen production based on formate decomposition with platinum nanoparticles dispersed by polyvinylpyrrolidone. NEW J CHEM 2021. [DOI: 10.1039/d1nj01181b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
18
Yang L, Hammelev CH, Pedersen CM. Catalytic and Atom-Economic Glycosylation using Glycosyl Formates and Cheap Metal Salts. CHEMSUSCHEM 2020;13:3166-3171. [PMID: 32267068 DOI: 10.1002/cssc.202000733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Indexed: 06/11/2023]
19
Guan C, Pan Y, Zhang T, Ajitha MJ, Huang K. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis. Chem Asian J 2020;15:937-946. [DOI: 10.1002/asia.201901676] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Indexed: 01/03/2023]
20
Léval A, Junge H, Beller M. Formic Acid Dehydrogenation by a Cyclometalated κ 3 ‐CNN Ruthenium Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
21
Minami Y, Muroga Y, Amao Y. Enhancement of catalytic activity for selective hydrogen production from formate with homogeneously poly(vinylpyrrolidone)/cationic poly(l-lysine) dispersed platinum nanoparticles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02032j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
Investigation of solvent effects in the hydrodeoxygenation of levulinic acid to γ-valerolactone over Ru catalysts. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
23
Manganese‐Mediated Formic Acid Dehydrogenation. Chemistry 2019;25:10557-10560. [DOI: 10.1002/chem.201901177] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Indexed: 02/05/2023]
24
Wu TK, Chen YT, Peng CS, Lin JH, Gliniak J, Chan HF, Chang CH, Li CR, Yu JSK, Lin JN. High-Rate Hydrogen Generation by Direct Sunlight Irradiation with a Triruthenium Complex. Inorg Chem 2019;58:1967-1975. [DOI: 10.1021/acs.inorgchem.8b02888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
25
Zhang Y, Lyu Y, Wang Y, Li C, Jiang M, Ding Y. Highly active and stable porous polymer heterogenous catalysts for decomposition of formic acid to produce H2. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63275-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
26
Zell T, Langer R. CO2-based hydrogen storage – formic acid dehydrogenation. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
27
Schuchmann K, Chowdhury NP, Müller V. Complex Multimeric [FeFe] Hydrogenases: Biochemistry, Physiology and New Opportunities for the Hydrogen Economy. Front Microbiol 2018;9:2911. [PMID: 30564206 PMCID: PMC6288185 DOI: 10.3389/fmicb.2018.02911] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022]  Open
28
Fischer S, Rösel A, Kammer A, Barsch E, Schoch R, Junge H, Bauer M, Beller M, Ludwig R. Diferrate [Fe2 (CO)6 (μ-CO){μ-P(aryl)2 }]− as Self-Assembling Iron/Phosphor-Based Catalyst for the Hydrogen Evolution Reaction in Photocatalytic Proton Reduction-Spectroscopic Insights. Chemistry 2018;24:16052-16065. [DOI: 10.1002/chem.201802694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 01/07/2023]
29
Nasir JA, Hafeez M, Arshad M, Ali NZ, Teixeira IF, McPherson I, Khan MA. Photocatalytic Dehydrogenation of Formic Acid on CdS Nanorods through Ni and Co Redox Mediation under Mild Conditions. CHEMSUSCHEM 2018;11:2587-2592. [PMID: 29847705 DOI: 10.1002/cssc.201800583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/29/2018] [Indexed: 06/08/2023]
30
Lu Z, Cherepakhin V, Demianets I, Lauridsen PJ, Williams TJ. Iridium-based hydride transfer catalysts: from hydrogen storage to fine chemicals. Chem Commun (Camb) 2018;54:7711-7724. [PMID: 29888372 PMCID: PMC6039230 DOI: 10.1039/c8cc03412e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
31
Zhang P, Guo YJ, Chen J, Zhao YR, Chang J, Junge H, Beller M, Li Y. Streamlined hydrogen production from biomass. Nat Catal 2018. [DOI: 10.1038/s41929-018-0062-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
32
Iglesias M, Oro LA. Mechanistic Considerations on Homogeneously Catalyzed Formic Acid Dehydrogenation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800159] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
33
Sommer C, Richers CP, Lubitz W, Rauchfuss TB, Reijerse EJ. A [RuRu] Analogue of an [FeFe]-Hydrogenase Traps the Key Hydride Intermediate of the Catalytic Cycle. Angew Chem Int Ed Engl 2018;57:5429-5432. [PMID: 29577535 DOI: 10.1002/anie.201801914] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/15/2022]
34
Sommer C, Richers CP, Lubitz W, Rauchfuss TB, Reijerse EJ. A [RuRu] Analogue of an [FeFe]-Hydrogenase Traps the Key Hydride Intermediate of the Catalytic Cycle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
35
Treigerman Z, Sasson Y. Carbon Dioxide Capturing for Purifying Hydrogen Generated by Formic Acid Decomposition. ChemistrySelect 2018. [DOI: 10.1002/slct.201703106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
36
Wisser FM, Berruyer P, Cardenas L, Mohr Y, Quadrelli EA, Lesage A, Farrusseng D, Canivet J. Hammett Parameter in Microporous Solids as Macroligands for Heterogenized Photocatalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03998] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
37
Veith H, Voges M, Held C, Albert J. Measuring and Predicting the Extraction Behavior of Biogenic Formic Acid in Biphasic Aqueous/Organic Reaction Mixtures. ACS OMEGA 2017;2:8982-8989. [PMID: 31457422 PMCID: PMC6645654 DOI: 10.1021/acsomega.7b01588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/28/2017] [Indexed: 06/10/2023]
38
Sharma A, Lawler KV, Wolffis JJ, Eckdahl CT, McDonald CS, Rowsell JLC, FitzGerald SA, Forster PM. Hydrogen Uptake on Coordinatively Unsaturated Metal Sites in VSB-5: Strong Binding Affinity Leading to High-Temperature D2/H2 Selectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017;33:14586-14591. [PMID: 29148779 DOI: 10.1021/acs.langmuir.7b03580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
39
Iguchi M, Zhong H, Himeda Y, Kawanami H. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid. Chemistry 2017;23:17788-17793. [PMID: 28960487 DOI: 10.1002/chem.201703766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 11/10/2022]
40
Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem Rev 2017;118:372-433. [DOI: 10.1021/acs.chemrev.7b00182] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
41
Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Anderson NH, Boncella JM, Tondreau AM. Reactivity of Silanes with ( t Bu PONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition. Chemistry 2017;23:13617-13622. [DOI: 10.1002/chem.201703722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/09/2022]
43
Li J, Chen W, Zhao H, Zheng X, Wu L, Pan H, Zhu J, Chen Y, Lu J. Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. J Catal 2017. [DOI: 10.1016/j.jcat.2017.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
44
Treigerman Z, Sasson Y. Further Observations on the Mechanism of Formic Acid Decomposition by Homogeneous Ruthenium Catalyst. ChemistrySelect 2017. [DOI: 10.1002/slct.201701119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
45
Li JJ, Lu JL. FeOx Coating on Pd/C Catalyst by Atomic Layer Deposition Enhances the Catalytic Activity in Dehydrogenation of Formic Acid. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1703032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
46
Preuster P, Alekseev A, Wasserscheid P. Hydrogen Storage Technologies for Future Energy Systems. Annu Rev Chem Biomol Eng 2017;8:445-471. [DOI: 10.1146/annurev-chembioeng-060816-101334] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
47
Matsunami A, Kuwata S, Kayaki Y. A Bifunctional Iridium Catalyst Modified for Persistent Hydrogen Generation from Formic Acid: Understanding Deactivation via Cyclometalation of a 1,2-Diphenylethylenediamine Motif. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01068] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
48
de Boer S, Korstanje TJ, La Rooij SR, Kox R, Reek JNH, van der Vlugt JI. Ruthenium PNN(O) Complexes: Cooperative Reactivity and Application as Catalysts for Acceptorless Dehydrogenative Coupling Reactions. Organometallics 2017;36:1541-1549. [PMID: 29353952 PMCID: PMC5770139 DOI: 10.1021/acs.organomet.7b00111] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/30/2022]
49
Chauvier C, Cantat T. A Viewpoint on Chemical Reductions of Carbon–Oxygen Bonds in Renewable Feedstocks Including CO2 and Biomass. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03581] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
50
Neary MC, Parkin G. Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe3)(CO)2H, CpMo(PMe3)2(CO)H, [CpMo(μ-O)(μ-O2CH)]2, and [Cp*Mo(μ-O)(μ-O2CH)]2. Inorg Chem 2017;56:1511-1523. [DOI: 10.1021/acs.inorgchem.6b02606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
PrevPage 1 of 4 1234Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA