1
|
Trowbridge L, Averkiev B, Sues PE. Electrocatalytic Hydrogen Evolution using a Nickel-based Calixpyrrole Complex: Controlling the Secondary Coordination Sphere on an Electrode Surface. Chemistry 2023; 29:e202301920. [PMID: 37665793 PMCID: PMC10842979 DOI: 10.1002/chem.202301920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Incorporating design elements from homogeneous catalysts to construct well defined active sites on electrode surfaces is a promising approach for developing next generation electrocatalysts for energy conversion reactions. Furthermore, if functionalities that control the electrode microenvironment could be integrated into these active sites it would be particularly appealing. In this context, a square planar nickel calixpyrrole complex, Ni(DPMDA) (DPMDA=2,2'-((diphenylmethylene)bis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))bis(azaneylylidene))dianiline) with pendant amine groups is reported that forms a heterogeneous hydrogen evolution catalyst using anilinium tetrafluoroborate as the proton source. The supported Ni(DPMDA) catalyst was surprisingly stable and displayed fast reaction kinetics with turnover frequencies (TOF) up to 25,900 s-1 or 366,000 s-1 cm-2 . Kinetic isotope effect (KIE) studies revealed a KIE of 5.7, and this data, combined with Tafel slope analysis, suggested that a proton-coupled electron transfer (PCET) process involving the pendant amine groups was rate-limiting. While evidence of an outer-sphere reduction of the Ni(DPMDA) catalyst was observed, it is hypothesized that the control over the secondary coordination sphere provided by the pendant amines facilitated such high TOFs and enabled the PCET mechanism. The results reported herein provide insight into heterogeneous catalyst design and approaches for controlling the secondary coordination sphere on electrode surfaces.
Collapse
Affiliation(s)
- Logan Trowbridge
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| | - Boris Averkiev
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| | - Peter E Sues
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| |
Collapse
|
2
|
Palladium complexes bearing calixpyrrole ligands with pendant hydrogen bond donors: Synthesis, structural characterization, electrochemistry and dihydrogen evolution. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Remiya JP, Sikha TS, Shyni B. One-pot synthesis and characterization of Schiff base macrocyclic complexes as a potential bioactive core – a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2021.2025223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- J. P. Remiya
- Department of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, India
| | - T. S. Sikha
- Department of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, India
| | - B. Shyni
- Department of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
4
|
Li CB, Bagnall AJ, Sun D, Rendon J, Koepf M, Gambarelli S, Mouesca JM, Chavarot-Kerlidou M, Artero V. Electrocatalytic reduction of protons to dihydrogen by the cobalt tetraazamacrocyclic complex [Co(N 4H)Cl 2] +: mechanism and benchmarking of performances. SUSTAINABLE ENERGY & FUELS 2021; 6:143-149. [PMID: 35028421 PMCID: PMC8691182 DOI: 10.1039/d1se01267c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
The cobalt tetraazamacrocyclic [Co(N4H)Cl2]+ complex is becoming a popular and versatile catalyst for the electrocatalytic evolution of hydrogen, because of its stability and superior activity in aqueous conditions. We present here a benchmarking of its performances based on the thorough analysis of cyclic voltammograms recorded under various catalytic regimes in non-aqueous conditions allowing control of the proton concentration. This allowed a detailed mechanism to be proposed with quantitative determination of the rate-constants for the various protonation steps, as well as identification of the amine function of the tetraazamacrocyclic ligand to act as a proton relay during H2 evolution.
Collapse
Affiliation(s)
- Cheng-Bo Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, The Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Andrew J Bagnall
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
- Ångström Laboratory, Department of Chemistry, Uppsala University SE75120 Uppsala Sweden
| | - Dongyue Sun
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Julia Rendon
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
- Univ. Grenoble Alpes, CNRS, CEA/IRIG-SyMMES 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Matthieu Koepf
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Serge Gambarelli
- Univ. Grenoble Alpes, CNRS, CEA/IRIG-SyMMES 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Jean-Marie Mouesca
- Univ. Grenoble Alpes, CNRS, CEA/IRIG-SyMMES 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| |
Collapse
|
5
|
Sandford C, Edwards MA, Klunder KJ, Hickey DP, Li M, Barman K, Sigman MS, White HS, Minteer SD. A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chem Sci 2019; 10:6404-6422. [PMID: 31367303 PMCID: PMC6615219 DOI: 10.1039/c9sc01545k] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Monitoring reactive intermediates can provide vital information in the study of synthetic reaction mechanisms, enabling the design of new catalysts and methods. Many synthetic transformations are centred on the alteration of oxidation states, but these redox processes frequently pass through intermediates with short life-times, making their study challenging. A variety of electroanalytical tools can be utilised to investigate these redox-active intermediates: from voltammetry to in situ spectroelectrochemistry and scanning electrochemical microscopy. This perspective provides an overview of these tools, with examples of both electrochemically-initiated processes and monitoring redox-active intermediates formed chemically in solution. The article is designed to introduce synthetic organic and organometallic chemists to electroanalytical techniques and their use in probing key mechanistic questions.
Collapse
Affiliation(s)
- Christopher Sandford
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Martin A Edwards
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Kevin J Klunder
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - David P Hickey
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Min Li
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Koushik Barman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Matthew S Sigman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Henry S White
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Shelley D Minteer
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| |
Collapse
|
6
|
Gueret R, Castillo CE, Rebarz M, Thomas F, Sliwa M, Chauvin J, Dautreppe B, Pécaut J, Fortage J, Collomb MN. Cobalt(II) Pentaaza-Macrocyclic Schiff Base Complex as Catalyst for Light-Driven Hydrogen Evolution in Water: Electrochemical Generation and Theoretical Investigation of the One-Electron Reduced Species. Inorg Chem 2019; 58:9043-9056. [DOI: 10.1021/acs.inorgchem.9b00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robin Gueret
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Mateusz Rebarz
- Université de Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | | | - Michel Sliwa
- Université de Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | | | - Baptiste Dautreppe
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, IRI, SYMMES 38000 Grenoble, France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRI, SYMMES 38000 Grenoble, France
| | | | | |
Collapse
|
7
|
Gygi D, Hwang SJ, Nocera DG. Scalable Syntheses of 4-Substituted Pyridine-Diimines. J Org Chem 2017; 82:12933-12938. [PMID: 29121772 DOI: 10.1021/acs.joc.7b02571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A concise benchtop and scalable synthesis of pyridine-diimine (PDI) ligand frameworks is presented using inexpensive commercial starting materials as opposed to previous syntheses of these ligands, which have confronted long and tedious routes that employ toxic and often difficult to scale pyrophoric reagents. The streamlined synthesis is derived from the facile delivery of 4-functionalized diacetylpyridines from a Minisci reaction using pyruvic acid, silver nitrate, and persulfate. As the PDI ligand scaffold has been adopted for a range of catalytic applications, the ability to modulate the electronic properties of the ligand with facility may be useful for optimizing a variety of catalytic transformations.
Collapse
Affiliation(s)
- David Gygi
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Seung Jun Hwang
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
An aryl-bridged dixanthene scaffold for building multinucleating ligands and supramolecular assemblies: Syntheses and structures. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Altmann PJ, Pöthig A. Capsoplexes: encapsulating complexes via guest recognition. Chem Commun (Camb) 2016; 52:9089-92. [DOI: 10.1039/c6cc00507a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new dinuclear Ni–NHC complex is able to selectively recognise and self-assemble with guests via tennis-ball like encapsulation, exemplarily demonstrated employing halides.
Collapse
Affiliation(s)
- Philipp J. Altmann
- Catalysis Research Center & Department of Chemistry
- Technische Universität München
- 85747 Garching bei München
- Germany
| | - Alexander Pöthig
- Catalysis Research Center & Department of Chemistry
- Technische Universität München
- 85747 Garching bei München
- Germany
| |
Collapse
|
10
|
Dogutan DK, Bediako DK, Graham DJ, Lemon CM, Nocera DG. Proton-coupled electron transfer chemistry of hangman macrocycles: Hydrogen and oxygen evolution reactions. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424614501016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The splitting of water into its constituent elements is an important solar fuels conversion reaction for the storage of renewable energy. For each of the half reactions of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), multiple protons and electrons must be coupled to avoid high-energy intermediates. To understand the mechanistic details of the PCET chemistry that underpins HER and OER, we have designed hangman porphyrin and corrole catalysts. In these hangman constructs, a pendant acid/base functionality within the secondary coordination sphere is "hung" above the macrocyclic redox platform on which substrate binds. The two critical thermodynamic properties of a PCET event, the redox potential and pKa may be tuned with the macrocycle and hanging group, respectively. This review outlines the synthesis of these catalysts, as well as the examination of the PCET kinetics of hydrogen and oxygen evolution by the hangman catalysts. The insights provided by these systems provide a guide for the design of future HER and OER catalysts that use a secondary coordination sphere to manage PCET.
Collapse
Affiliation(s)
- Dilek K. Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138, United States
| | - D. Kwabena Bediako
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138, United States
| | - Daniel J. Graham
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138, United States
| | - Christopher M. Lemon
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
11
|
Chen L, Chen G, Leung CF, Yiu SM, Ko CC, Anxolabéhère-Mallart E, Robert M, Lau TC. Dual Homogeneous and Heterogeneous Pathways in Photo- and Electrocatalytic Hydrogen Evolution with Nickel(II) Catalysts Bearing Tetradentate Macrocyclic Ligands. ACS Catal 2014. [DOI: 10.1021/cs501534h] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lingjing Chen
- Institute
of Molecular Functional Materials and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Gui Chen
- Institute
of Molecular Functional Materials and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chi-Fai Leung
- Institute
of Molecular Functional Materials and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shek-Man Yiu
- Institute
of Molecular Functional Materials and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chi-Chiu Ko
- Institute
of Molecular Functional Materials and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Elodie Anxolabéhère-Mallart
- Université
Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie
Moléculaire, Unité Mixte de Recherche Université−CNRS no. 7591, Bâtiment Lavoisier, 15 rue Jean
de Baïf, 75205 Paris Cedex 13, France
| | - Marc Robert
- Université
Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie
Moléculaire, Unité Mixte de Recherche Université−CNRS no. 7591, Bâtiment Lavoisier, 15 rue Jean
de Baïf, 75205 Paris Cedex 13, France
| | - Tai-Chu Lau
- Institute
of Molecular Functional Materials and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Rezaeivala M, Keypour H. Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety – The first 50 years. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.06.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Graham DJ, Zheng SL, Nocera DG. Post-synthetic modification of hangman porphyrins synthesized on the gram scale. CHEMSUSCHEM 2014; 7:2449-2452. [PMID: 24975130 DOI: 10.1002/cssc.201402242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 06/03/2023]
Abstract
We report a multi-gram scale synthesis of methyl 6-formyl-4-dibenzofurancarboxylate and its subsequent use in the gram scale synthesis of a dibenzofuran-functionalized hangman porphyrin containing a pendant carboxylic acid (HPD-CO2H). HPD-CO2H can be isolated as a free carboxylic acid in high purity with minimal purification. Post-synthetic modification of HPD-CO2H allows for the introduction of any desired pendant group in good yields, resulting in a practical amount of hangman porphyrin ligand with an easily customizable second coordination sphere. The cobalt complexes of these hangman porphyrins are shown to be active proton reduction electrocatalysts.
Collapse
Affiliation(s)
- Daniel J Graham
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138 (USA)
| | | | | |
Collapse
|