1
|
Chen J, Xia Q, Guo Y, Wang Y, Li X, Wang M, Qiu J, Wang Y, Sofianos MV, Liu S. Pt-Loaded Nb─W Metal Composite Oxide for Selective Cleavage of Secondary C─O Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304612. [PMID: 37533398 DOI: 10.1002/smll.202304612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/19/2023] [Indexed: 08/04/2023]
Abstract
Selective hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO) is recognized as one of the most promising reactions for the valorization of biomass. Precise activation of C─O bonds of glycerol molecule is the key step to realize the high yield of catalytic conversion. Here, a Pt-loaded Nb-W composite oxides with crystallographic shear phase for the precise activation and cleavage of secondary C─O (C(2)─O) bonds are first reported. The developed Nb14 W3 O44 with uniform structure possesses arrays of W-O-Nb active sites that totally distinct from individual WOx or NbOx species, which is superior to the adsorption and activation of C(2)─O bonds. The Nb14 W3 O44 support with rich reversible redox couples also promotes the electron feedback ability of Pt and enhances its interaction with Pt nanoparticles, resulting in high activity for H2 dissociation and hydrogenation. All these favorable factors confer the Pt/Nb14 W3 O44 excellent performance for selective hydrogenolysis of glycerol to 1,3-PDO with the yield of 75.2% exceeding the record of 66%, paying the way for the commercial development of biomass conversion. The reported catalysts or approach can also be adopted to create a family of Nb-W metal composite oxides for other catalytic reactions requiring selective C─O bond activation and cleavage.
Collapse
Affiliation(s)
- Jinghu Chen
- State Key laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Mingming Wang
- State Key laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jieshan Qiu
- State Key laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Maria Veronica Sofianos
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Shaomin Liu
- State Key laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 3000387, China
| |
Collapse
|
2
|
Gatti MN, Perez FM, Santori GF, Nichio NN, Pompeo F. Heterogeneous Catalysts for Glycerol Biorefineries: Hydrogenolysis to 1,2-Propylene Glycol. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093551. [PMID: 37176434 PMCID: PMC10180530 DOI: 10.3390/ma16093551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Research on the use of biomass resources for the generation of energy and chemical compounds is of great interest worldwide. The development and growth of the biodiesel industry has led to a parallel market for the supply of glycerol, its main by-product. Its wide availability and relatively low cost as a raw material make glycerol a basic component for obtaining various chemical products and allows for the development of a biorefinery around biodiesel plants, through the technological integration of different production processes. This work proposes a review of one of the reactions of interest in the biorefinery environment: the hydrogenolysis of glycerol to 1,2-propylene glycol. The article reviews more than 300 references, covering literature from about 20 years, focusing on the heterogeneous catalysts used for the production of glycol. In this sense, from about 175 catalysts, between bulk and supported ones, were revised and discussed critically, based on noble metals, such as Ru, Pt, Pd, and non-noble metals as Cu, Ni, Co, both in liquid (2-10 MPa, 120-260 °C) and vapor phase (0.1 MPa, 200-300 °C). Then, the effect of the main operational and decision variables, such as temperature, pressure, catalyst/glycerol mass ratio, space velocity, and H2 flow, are discussed, depending on the reactors employed. Finally, the formulation of several kinetic models and stability studies are presented, discussing the main deactivation mechanisms of the catalytic systems such as coking, leaching, and sintering, and the presence of impurities in the glycerol feed. It is expected that this work will serve as a tool for the development of more efficient catalytic materials and processes towards the future projection of glycerol biorefineries.
Collapse
Affiliation(s)
- Martín N Gatti
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Federico M Perez
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Gerardo F Santori
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Nora N Nichio
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Francisco Pompeo
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| |
Collapse
|
3
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
4
|
Luo Z, Zhu Z, Xiao R, Chu D. Selective Production of 1,2-Propanediol or 1,3-Propanediol from Glycerol Hydrogenolysis over Transition Metal Doped Pt/TiO 2. Chem Asian J 2023; 18:e202201046. [PMID: 36546829 DOI: 10.1002/asia.202201046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Selective hydrogenolysis of biomass-derived glycerol to propanediol is important for producing high value-added chemicals from renewable resources but faces a huge challenge. Here we report a transition metal doped Pt/TiO2 catalyst with incorporated Cr, Mo, or W oxides, which exhibits the selective formation of 1,2-propanediol or 1,3-propanediol with a yield from 51.2% to 82.5% toward glycerol hydrogenolysis. In situ experimental studies verify that the surrounding CrOx decreases the hydrogenating ability of Pt, leading to the formation of 1,2-propanediol, while the MoOx or WOx brings the Brønsted acid, giving 1,3-propanediol. This modification based on the catalyst compositions alters the reaction pathway with a different adsorption and bond scission mechanism, which can be extended to other sustainable catalytic systems.
Collapse
Affiliation(s)
- Zhicheng Luo
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, 210096, Nanjing, P. R. China
| | - Zhiguo Zhu
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, P. R. China
| | - Rui Xiao
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, 210096, Nanjing, P. R. China
| | - Dawang Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, P. R. China
| |
Collapse
|
5
|
Zeng G, Wu J, Shen L, Zheng Q, Chen ZN, Xu X, Tu T. Modular Access to Quaternary α-Hydroxyl Acetates by Catalytic Cross-Coupling of Alcohols. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Guangkuo Zeng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Insights into active tungsten species on Pt/W/SBA-15 catalysts for selective hydrodeoxygenation of glycerol to 1,3-propanediol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Abstract
Humanity’s growing dependence on non-renewable resources and the ensuing environmental impact thus generated have spurred the search for alternatives to replace chemicals and energy obtained from petroleum derivatives. Within the group of biofuels, biodiesel has managed to expand worldwide at considerable levels, going from 20 million tn/year in 2010 to 47 million tn/year in 2022, boosting the supply of glycerol, a by-product of its synthesis that can be easily used as a renewable, clean, low-cost raw material for the manufacture of products for the chemical industry. The hydrogenolysis of glycerol leads to the production of glycols, 1,2-propylene glycol (1,2-PG) and 1,3-propylene glycol (1,3-PG). In particular, 1,3-PG has the highest added value and has multiple uses including its application as an additive in the polymer industry, the manufacture of cosmetics, cleaning products, cooling liquids, etc. This review focuses on the study of the hydrogenolysis of glycerol for the production of 1,3-PG, presenting the main reaction mechanisms and the catalysts employed, both in liquid and vapor phase. Engineering aspects and the effect of the operating variables to achieve maximum yields are discussed. Finally, studies related to the stability and the main deactivation mechanisms of catalytic systems are presented.
Collapse
|
8
|
Chen C, Liang Y, Tang Q, Li D, Liu L, Dong J. In Situ Growth of Tungsten Oxide on Alumina to Boost the Catalytic Performance of Platinum for Glycerol Hydrogenolysis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chen Chen
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Yingze West Street 79, Taiyuan 030024, Shanxi, China
| | - Yu Liang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Yingze West Street 79, Taiyuan 030024, Shanxi, China
| | - Qiong Tang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Yingze West Street 79, Taiyuan 030024, Shanxi, China
| | - Dong Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Yingze West Street 79, Taiyuan 030024, Shanxi, China
| | - Lei Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Yingze West Street 79, Taiyuan 030024, Shanxi, China
| | - Jinxiang Dong
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Yingze West Street 79, Taiyuan 030024, Shanxi, China
| |
Collapse
|
9
|
Hydrogenolysis of glycerol to 1,3-propanediol over H-ZSM-5-supported iridium and rhenium oxide catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Wen Y, Liu S, Shen W, Fang Y. Study on activity and stability of Pt-Ru/WO x/Al 2O 3 catalyst in the glycerol selective hydrogenolysis to 1,3-propanediol. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2084390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yinglin Wen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Shiyu Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Weihua Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yunjin Fang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
11
|
Nakagawa Y, Hayasaka H, Asano T, Tamura M, Okumura K, Tomishige K. One-pot production of dioctyl ether from 1,2-octanediol over rutile-titania-supported palladium-tungsten catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2020.111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Zhao J, Hou B, Guo H, Jia L, Niu P, Chen C, Xi H, Li D, Zhang J. Insight into the Influence of WOx‐Support Interaction over Pt/W/SiZr Catalysts on 1,3‐Propanediol Synthesis from Glycerol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junxiu Zhao
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Bo Hou
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Heqin Guo
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion 27 Taoyuan South Road 030001 Taiyuan CHINA
| | - Litao Jia
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Pengyu Niu
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Congbiao Chen
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Hongjuan Xi
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Debao Li
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Jianli Zhang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering CHINA
| |
Collapse
|
13
|
Barik M, Mishra J, Dabas S, Chinnaraja E, Subramanian S, Subramanian PS. Modified boehmite: a choice of catalyst for the selective conversion of glycerol to five-membered dioxolane. NEW J CHEM 2022. [DOI: 10.1039/d1nj04860k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic activity of WO3@boehmite for the acetalization of glycerol with aromatic aldehydes is described in this article. The catalyst is selective towards dioxolane (up to 96%) with excellent conversion (up to 100%) in selective substrates.
Collapse
Affiliation(s)
- Manas Barik
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyotiranjan Mishra
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shilpa Dabas
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eswaran Chinnaraja
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saravanan Subramanian
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palani S. Subramanian
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
da Silva Ruy AD, de Brito Alves RM, Reis Hewer TL, de Aguiar Pontes D, Gomes Teixeira LS, Magalhães Pontes LA. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Catalytic Conversion of Glycerol into Hydrogen and Value-Added Chemicals: Recent Research Advances. Catalysts 2021. [DOI: 10.3390/catal11121455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent decades, the use of biomass as alternative resources to produce renewable and sustainable biofuels such as biodiesel has gained attention given the situation of the progressive exhaustion of easily accessible fossil fuels, increasing environmental concerns, and a dramatically growing global population. The conventional transesterification of edible, nonedible, or waste cooking oils to produce biodiesel is always accompanied by the formation of glycerol as the by-product. Undeniably, it is essential to economically use this by-product to produce a range of valuable fuels and chemicals to ensure the sustainability of the transesterification process. Therefore, recently, glycerol has been used as a feedstock for the production of value-added H2 and chemicals. In this review, the recent advances in the catalytic conversion of glycerol to H2 and high-value chemicals are thoroughly discussed. Specifically, the activity, stability, and recyclability of the catalysts used in the steam reforming of glycerol for H2 production are covered. In addition, the behavior and performance of heterogeneous catalysts in terms of the roles of active metal and support toward the formation of acrolein, lactic acid, 1,3-propanediol, and 1,2-propanediol from glycerol are reviewed. Recommendations for future research and main conclusions are provided. Overall, this review offers guidance and directions for the sufficient and economical utilization of glycerol to generate fuels and high value chemicals, which will ultimately benefit industry, environment, and economy.
Collapse
|
16
|
Zhang D, Zhang Q, Zhou Z, Li Z, Meng K, Fang T, You Z, Zhang G, Yin B, Shen J, Yang C, Yan W, Jin X. Hydrogenolysis of Glycerol to 1,3‐Propanediol: Are Spatial and Electronic Configuration of “Metal‐Solid Acid” Interface Key for Active and Durable Catalysts? ChemCatChem 2021. [DOI: 10.1002/cctc.202101316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongpei Zhang
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Quanxing Zhang
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Ziqi Zhou
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Ze Li
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Kexin Meng
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Zhenchao You
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Guangyu Zhang
- Sinopec Research Institute of Safety Engineering Qingdao Shandong Province 266580 P. R. China
| | - Bin Yin
- College of Fisheries Southwest University Chongqing 400700 P. R. China
| | - Jian Shen
- College of Environment and Resources Xiangtan University Xiangtan Hunan Province 411105 P. R. China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum Qingdao Shandong Province 266580 P. R. China
| |
Collapse
|
17
|
Insights into the Nature of the Active Sites of Pt-WOx/Al2O3 Catalysts for Glycerol Hydrogenolysis into 1,3-Propanediol. Catalysts 2021. [DOI: 10.3390/catal11101171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The chemo-selective hydrogenolysis of secondary hydroxyls is an important reaction for the production of biomass-derived α,ω-diols. This is the case for 1,3-propanediol production from glycerol. Supported Pt-WOx materials are effective catalysts for this transformation, and their activity is often related to the tungsten surface density and Brönsted acidity, although there are discrepancies in this regard. In this work, a series of Pt-WOx/γ-Al2O3 catalysts were prepared by modifying the pH of the solutions used in the active metal impregnation step. The activity–structure relationships, together with the results from the addition of in situ titrants, i.e., 2,6-di-tert-butyl-pyridine or pyridine, helped in elucidating the nature of the bifunctional active sites for the selective production of 1,3-propanediol.
Collapse
|
18
|
Zhou Z, Jia H, Guo Y, Wang Y, Liu X, Xia Q, Li X, Wang Y. The Promotional Effect of Sulfates on TiO
2
Supported Pt‐WO
x
Catalyst for Hydrogenolysis of Glycerol. ChemCatChem 2021. [DOI: 10.1002/cctc.202100863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhiming Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing 314001 P.R.China
| | - Hongyan Jia
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing 314001 P.R.China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing 314001 P.R.China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing 314001 P.R.China
| | - Xi Li
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing 314001 P.R.China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| |
Collapse
|
19
|
Zhao B, Liang Y, Liu L, He Q, Dong J. Facilitating Pt−WO
x
Species Interaction for Efficient Glycerol Hydrogenolysis to 1,3‐Propanediol. ChemCatChem 2021. [DOI: 10.1002/cctc.202100773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Binbin Zhao
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Yingze West Street 79 Taiyuan 030024 Shanxi P. R. China
| | - Yu Liang
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Yingze West Street 79 Taiyuan 030024 Shanxi P. R. China
| | - Lei Liu
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Yingze West Street 79 Taiyuan 030024 Shanxi P. R. China
| | - Qian He
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1, Block EA #03-09 Singapore 117575 Singapore
| | - Jin‐Xiang Dong
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Yingze West Street 79 Taiyuan 030024 Shanxi P. R. China
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangdong University Town, Panyu District, No. 100 Waihuanxi Road Guangzhou 510006 P. R. China
| |
Collapse
|
20
|
Hydrogenolysis of glycerol to 1,3-propanediol over a Al2O3-supported platinum tungsten catalyst with two-dimensional open structure. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Mohammadi M, Khodamorady M, Tahmasbi B, Bahrami K, Ghorbani-Choghamarani A. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Wu F, Jiang H, Zhu X, Lu R, Shi L, Lu F. Effect of Tungsten Species on Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. CHEMSUSCHEM 2021; 14:569-581. [PMID: 33219614 DOI: 10.1002/cssc.202002405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Indexed: 06/11/2023]
Abstract
Glycerol, as the major byproduct of biodiesel industry, is a cheap and green chemical feedstock. Following the expanded production of biodiesel, the oversupply of glycerol has led to increasing research of the catalytic conversion of glycerol. The selective hydrogenolysis of glycerol is an economical and sustainable way to produce 1,3-propanediol, which experiences a global growing demand, and valorize glycerol. However, the secondary hydroxy group of glycerol is sterically hindered by two primary hydroxy groups. As a result, 1,2-propanediol is the preferential product rather than 1,3-propanediol during conventional hydrogenolysis of glycerol. Currently, tungsten-containing bifunctional catalysts with metal and Brønsted acid sites are considered as a highly effective and atom-economical catalytic system for the selective hydrogenolysis of glycerol to 1,3-propanediol. Therefore, this Minireview summarized various tungsten-containing bifunctional catalysts for the hydrogenolysis of glycerol in detail and deeply discussed the relationship between tungsten species, metal active sites, and glycerol for selectively producing 1,3-propanediol.
Collapse
Affiliation(s)
- Fengliang Wu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuhai Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Lei Shi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| |
Collapse
|
23
|
Bhowmik S, Enjamuri N, Darbha S. Hydrogenolysis of glycerol in an aqueous medium over Pt/WO 3/zirconium phosphate catalysts studied by 1H NMR spectroscopy. NEW J CHEM 2021. [DOI: 10.1039/d0nj05557c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pt/WO3/zirconium phosphate shows high catalytic activity for C–O bond hydrogenolysis of glycerol in an aqueous medium, and 1H NMR is demonstrated as a simple, alternative technique for quantifying the hydrogenolysis products.
Collapse
Affiliation(s)
- Susmita Bhowmik
- Catalysis and Inorganic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Nagasuresh Enjamuri
- Catalysis and Inorganic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Srinivas Darbha
- Catalysis and Inorganic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
24
|
Yamaguchi S, Kondo H, Uesugi K, Sakoda K, Jitsukawa K, Mitsudome T, Mizugaki T. H
2
‐Free Selective Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sho Yamaguchi
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560–8531 Japan
| | - Hiroki Kondo
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560–8531 Japan
| | - Kohei Uesugi
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560–8531 Japan
| | - Katsumasa Sakoda
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560–8531 Japan
| | - Koichiro Jitsukawa
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560–8531 Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560–8531 Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560–8531 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University
| |
Collapse
|
25
|
Chen J, Xia Q, Wang Y, Huang Y. Progress in Production of 1, 3-propanediol From Selective Hydrogenolysis of Glycerol. FRONTIERS IN CHEMICAL ENGINEERING 2020. [DOI: 10.3389/fceng.2020.604624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1,3-propanediol (1,3-PDO) is an important bulk chemical widely used in the polyester and polyurethane industry. The selective hydrogenolysis of glycerol to value-added 1,3-PDO is extremely attractive. However, the formation of 1,3-PDO is less thermodynamically stable than 1,2-PDO, and the steric hindrance effect in the reaction process makes the highly selective production of 1,3-PDO a great challenge. In this mini review, the recent research progress on the selective catalytic hydrogenolysis of glycerol to 1,3-PDO is overviewed and the catalytic mechanism of the reaction is summarized. We mainly focus on the different performances of each type of catalyst (Pt-W-based catalysts, Ir-Re based-catalysts, and other types) as well as the interactions between metals and supports. Finally, several personal perspectives on the opportunities and challenges within this promising field are discussed.
Collapse
|
26
|
Miao G, Shi L, Zhou Z, Zhu L, Zhang Y, Zhao X, Luo H, Li S, Kong L, Sun Y. Catalyst Design for Selective Hydrodeoxygenation of Glycerol to 1,3-Propanediol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gai Miao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Shi
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Zhimin Zhou
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lijun Zhu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanfei Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinpeng Zhao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hu Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Lingzhao Kong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| |
Collapse
|
27
|
Wen Y, Shen W, Li Y, Fang Y. Promoting effect of Ru in the Pt-Ru/WOx/Al2O3 catalyst for the selective hydrogenolysis of glycerol to 1,3-propanediol. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01908-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Aihara T, Asazuma K, Miura H, Shishido T. Highly active and durable WO 3/Al 2O 3 catalysts for gas-phase dehydration of polyols. RSC Adv 2020; 10:37538-37544. [PMID: 35521259 PMCID: PMC9057158 DOI: 10.1039/d0ra08340b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 01/30/2023] Open
Abstract
Gas-phase glycerol dehydration over WO3/Al2O3 catalysts was investigated. WO3 loading on γ-Al2O3 significantly affected the yield of acrolein and the catalyst with 20 wt% WO3 loading showed the highest activity. The WO3/Al2O3 catalyst with 20 wt% WO3 loading showed higher activity and durability than the other supported WO3 catalysts and zeolites. The number of Brønsted acid sites and mesopores of the WO3/Al2O3 catalyst did not decrease after the reaction, suggesting that glycerol has continuous access to Brønsted acid sites inside the mesopores of WO3/Al2O3, thereby sustaining a high rate of formation of acrolein. Dehydration under O2 flow further increased the durability of the WO3/Al2O3 catalyst, enabling the sustainable formation of acrolein. In addition, the WO3/Al2O3 catalyst with 20 wt% WO3 loading showed high activity for the dehydration of various polyols to afford the corresponding products in high yield.
Collapse
Affiliation(s)
- Takeshi Aihara
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
| | - Katsuya Asazuma
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
- Elements Strategy Initiative for Catalysts & Batteries, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8520 Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
- Research Center for Gold Chemistry, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
- Elements Strategy Initiative for Catalysts & Batteries, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8520 Japan
| |
Collapse
|
29
|
Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63586-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Bhowmik S, Darbha S. Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1794737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Susmita Bhowmik
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Srinivas Darbha
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
31
|
Lei N, Miao Z, Liu F, Wang H, Pan X, Wang A, Zhang T. Understanding the deactivation behavior of Pt/WO3/Al2O3 catalyst in the glycerol hydrogenolysis reaction. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63549-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Investigation of the mechanism of the selective hydrogenolysis of C O bonds over a Pt/WO3/Al2O3 catalyst. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Niu Y, Zhao B, Liang Y, Liu L, Dong J. Promoting Role of Oxygen Deficiency on a WO3-Supported Pt Catalyst for Glycerol Hydrogenolysis to 1,3-Propanediol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yufeng Niu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Binbin Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yu Liang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinxiang Dong
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
34
|
|
35
|
Tamura M, Nakagawa Y, Tomishige K. Reduction of sugar derivatives to valuable chemicals: utilization of asymmetric carbons. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00654h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent progress on non-furfural routes from sugar derivatives to valuable chemicals including chiral chemicals was reviewed.
Collapse
Affiliation(s)
- Masazumi Tamura
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
36
|
Liu L, Asano T, Nakagawa Y, Tamura M, Okumura K, Tomishige K. Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over Rhenium-Oxide-Modified Iridium Nanoparticles Coating Rutile Titania Support. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03824] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lujie Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takehiro Asano
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1 Aoba, Aramaki,
Aoba-ku, Sendai 980-0845, Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1 Aoba, Aramaki,
Aoba-ku, Sendai 980-0845, Japan
| | - Kazu Okumura
- Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1 Aoba, Aramaki,
Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
37
|
Lei N, Zhao X, Hou B, Yang M, Zhou M, Liu F, Wang A, Zhang T. Effective Hydrogenolysis of Glycerol to 1,3‐Propanediol over Metal‐Acid Concerted Pt/WO
x
/Al
2
O
3
Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201900689] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nian Lei
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaochen Zhao
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Baolin Hou
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Man Yang
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Maoxiang Zhou
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fei Liu
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Aiqin Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Tao Zhang
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
38
|
Interface synergy between IrOx and H-ZSM-5 in selective C–O hydrogenolysis of glycerol toward 1,3-propanediol. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Wang Y, Xiao Y, Xiao G. Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Influence of Boron, Tungsten and Molybdenum Modifiers on Zirconia Based Pt Catalyst for Glycerol Valorization. NANOMATERIALS 2019; 9:nano9040509. [PMID: 30986962 PMCID: PMC6523238 DOI: 10.3390/nano9040509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022]
Abstract
The influence of boron, tungsten and molybdenum modifiers on zirconia-based Pt catalyst was studied for glycerol valorization. Zirconia modified supports were prepared by impregnation of ZrO2 with either boric, silicontungstic or phosphomolybdic acids to obtain supports with enhanced Brönsted acidic properties. The modified supports were subsequently impregnated with chloroplatinic acid to obtain Pt-based catalysts. Pt incorporation resulted in the increase in Lewis acidity of the solids, being more significant for the Pt//W/ZrO2 catalyst. Reduced Pt catalysts were tested for the liquid-phase glycerol hydrogenolysis, observing a synergistic effect between catalyst acid sites and metal function that proved to be crucial in glycerol hydrogenolysis. The Pt//W/ZrO2 catalyst was the most active catalyst in this reaction, being the only leading to 1,3-PDO (45% sel., 160 °C) while Pt//Mo/ZrO2 is the best option for 1,2-PDO (49% sel., 180 °C). Reusability studies carried out for Pt//W/ZrO2 showed that catalytic activity dropped after the first use, remaining constant for the second and subsequent ones. Selectivity to reaction products also changes during reuses. Therefore, the selectivity to 1,2 PDO increases in the first reuse in detriment to the selectivity to n-propanol whereas the selectivity to 1,3-PDO remains constant along the uses. This behavior could be associated to the lixiviation of W species and/or catalyst fouling during reaction runs.
Collapse
|
41
|
Shi H. Valorization of Biomass‐derived Small Oxygenates: Kinetics, Mechanisms and Site Requirements of H2‐involved Hydrogenation and Deoxygenation Pathways over Heterogeneous Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201801828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Shi
- Department of Chemistry, Catalysis Research CenterTechnical University Munich Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
42
|
Feng S, Zhao B, Liang Y, Liu L, Dong J. Improving Selectivity to 1,3-Propanediol for Glycerol Hydrogenolysis Using W- and Al-Incorporated SBA-15 as Support for Pt Nanoparticles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b03982] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shanghua Feng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- School of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Binbin Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yu Liang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Lei Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jinxiang Dong
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
43
|
Sun Y, Cai Z, Li X, Chen P, Hou Z. Selective synthesis of 1,3-propanediol from glycidol over a carbon film encapsulated Co catalyst. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01162e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A carbon film encapsulated Co NP catalyst (Co@NC) was highly active, selective and stable for the hydrogenation of glycidol to 1,3-PDO.
Collapse
Affiliation(s)
- Yanyan Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemistry
- Zhejiang University
- PR China
| | - Zhongshun Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemistry
- Zhejiang University
- PR China
| | - Xuewen Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemistry
- Zhejiang University
- PR China
| | - Ping Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemistry
- Zhejiang University
- PR China
| | - Zhaoyin Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Department of Chemistry
- Zhejiang University
- PR China
- Center of Chemistry for Frontier Technologies
| |
Collapse
|
44
|
Aihara T, Miura H, Shishido T. Effect of perimeter interface length between 2D WO3 monolayer domain and γ-Al2O3 on selective hydrogenolysis of glycerol to 1,3-propanediol. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01385g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The perimeter interface between WO3 and γ-Al2O3 was found to play an important role in selective hydrogenolysis of glycerol to 1,3-propanediol.
Collapse
Affiliation(s)
- Takeshi Aihara
- Department of Applied Chemistry for Environment
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Tokyo 192-0397
- Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Tokyo 192-0397
- Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Tokyo 192-0397
- Japan
| |
Collapse
|
45
|
Varghese JJ, Cao L, Robertson C, Yang Y, Gladden LF, Lapkin AA, Mushrif SH. Synergistic Contribution of the Acidic Metal Oxide–Metal Couple and Solvent Environment in the Selective Hydrogenolysis of Glycerol: A Combined Experimental and Computational Study Using ReOx–Ir as the Catalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jithin John Varghese
- Cambridge Centre for Advanced Research and Education in Singapore (CARES) Ltd., Campus for Research Excellence and Technological Enterprise (CREATE), CREATE Tower 1, CREATE Way, Singapore 138602
| | - Liwei Cao
- Cambridge Centre for Advanced Research and Education in Singapore (CARES) Ltd., Campus for Research Excellence and Technological Enterprise (CREATE), CREATE Tower 1, CREATE Way, Singapore 138602
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Christopher Robertson
- Cambridge Centre for Advanced Research and Education in Singapore (CARES) Ltd., Campus for Research Excellence and Technological Enterprise (CREATE), CREATE Tower 1, CREATE Way, Singapore 138602
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Yanhui Yang
- Cambridge Centre for Advanced Research and Education in Singapore (CARES) Ltd., Campus for Research Excellence and Technological Enterprise (CREATE), CREATE Tower 1, CREATE Way, Singapore 138602
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore, 62 Nanyang Drive, Singapore 637459
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China 210028
| | - Lynn F. Gladden
- Cambridge Centre for Advanced Research and Education in Singapore (CARES) Ltd., Campus for Research Excellence and Technological Enterprise (CREATE), CREATE Tower 1, CREATE Way, Singapore 138602
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Alexei A. Lapkin
- Cambridge Centre for Advanced Research and Education in Singapore (CARES) Ltd., Campus for Research Excellence and Technological Enterprise (CREATE), CREATE Tower 1, CREATE Way, Singapore 138602
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Samir H. Mushrif
- Cambridge Centre for Advanced Research and Education in Singapore (CARES) Ltd., Campus for Research Excellence and Technological Enterprise (CREATE), CREATE Tower 1, CREATE Way, Singapore 138602
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore, 62 Nanyang Drive, Singapore 637459
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street Northwest, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
46
|
Mizugaki T, Kaneda K. Development of High Performance Heterogeneous Catalysts for Selective Cleavage of C-O and C-C Bonds of Biomass-Derived Oxygenates. CHEM REC 2018; 19:1179-1198. [PMID: 30230196 DOI: 10.1002/tcr.201800075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
The environmental impact of CO2 emissions via the use of fossil resources as chemical feedstock and fuels has stimulated research to utilize renewable biomass feedstock. The biogenic compounds such as polyols are highly oxygenated and their valorization requires the new methods to control the oxygen to carbon ratio of the chemicals. The catalytic cleavage of C-O bonds and C-C bonds is promising methods, but the conventional catalyst systems encounter the difficulty to obtain the high yields of the desired products. This review describes our recent development of the high performance heterogeneous catalysts for the valorization of the biogenic chemicals such as glycerol, furfural, and levulinic acid via selective cleavage of C-O bonds and C-C bonds in the liquid-phase. Selective C-O bond cleavage by hydrogenolysis enables production of various diols useful as engineering plastics, antifreeze, and cosmetics in high yields. The success of the selective C-C bond scission of levulinic acid can be applied to a wide range of the biogenic oxygenates such as carboxylic acids, esters, lactones, and primary alcohols, in which the selective C-C bond scission at adjacent to the oxygen functional groups are achieved. Furthermore, valorization of glycerol by selective acetylation and acetalization, and of levulinic acid by hydrogenation is described. Our catalysts show excellent performance compared to the reported catalysts in the aforementioned valorization.
Collapse
Affiliation(s)
- Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kiyotomi Kaneda
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
47
|
Toward the Sustainable Synthesis of Propanols from Renewable Glycerol over MoO3-Al2O3 Supported Palladium Catalysts. Catalysts 2018. [DOI: 10.3390/catal8090385] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The catalytic conversion of glycerol to value-added propanols is a promising synthetic route that holds the potential to overcome the glycerol oversupply from the biodiesel industry. In this study, selective hydrogenolysis of 10 wt% aqueous bio-glycerol to 1-propanol and 2-propanol was performed in the vapor phase, fixed-bed reactor by using environmentally friendly bifunctional Pd/MoO3-Al2O3 catalysts prepared by wetness impregnation method. The physicochemical properties of these catalysts were derived from various techniques such as X-ray diffraction, NH3-temperature programmed desorption, scanning electron microscopy, 27Al NMR spectroscopy, surface area analysis, and thermogravimetric analysis. The catalytic activity results depicted that a high catalytic activity (>80%) with very high selectivity (>90%) to 1-propanol and 2-propanol was obtained over all the catalysts evaluated in a continuously fed, fixed-bed reactor. However, among all others, 2 wt% Pd/MoO3-Al2O3 catalyst was the most active and selective to propanols. The synergic interaction between the palladium and MoO3 on Al2O3 support and high strength weak to moderate acid sites of the catalyst were solely responsible for the high catalytic activity. The maximum glycerol conversion of 88.4% with 91.3% selectivity to propanols was achieved at an optimum reaction condition of 210 ∘ C and 1 bar pressure after 3 h of glycerol hydrogenolysis reaction.
Collapse
|
48
|
Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-WOx/SAPO-34 catalysts. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Yang C, Zhang F, Lei N, Yang M, Liu F, Miao Z, Sun Y, Zhao X, Wang A. Understanding the promotional effect of Au on Pt/WO 3 in hydrogenolysis of glycerol to 1,3-propanediol. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63103-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Effect of WOx Doping into Pt/SiO2 Catalysts for Glycerol Hydrogenolysis to 1,3-Propanediol in Liquid Phase. Catal Letters 2018. [DOI: 10.1007/s10562-018-2464-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|