1
|
Verspeek D, Ahrens S, Wen X, Yang Y, Li YW, Junge K, Beller M. A manganese-based catalyst system for general oxidation of unactivated olefins, alkanes, and alcohols. Org Biomol Chem 2024; 22:2630-2642. [PMID: 38456330 DOI: 10.1039/d4ob00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Non-noble metal-based catalyst systems consisting of inexpensive manganese salts, picolinic acid and various heterocycles enable epoxidation of the challenging (terminal) unactivated olefins, selective C-H oxidation of unactivated alkanes, and O-H oxidation of secondary alcohols with aqueous hydrogen peroxide. In the presence of the in situ generated optimal manganese catalyst, epoxides are generated with up to 81% yield from alkenes and ketone products with up to 51% yield from unactivated alkanes. This convenient protocol allows the formation of the desired products under ambient conditions (room temperature, 1 bar) by employing only a slight excess of hydrogen peroxide with 2,3-butadione as a sub-stoichiometric additive.
Collapse
Affiliation(s)
- Dennis Verspeek
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Sebastian Ahrens
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Xiandong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Kathrin Junge
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Matthias Beller
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| |
Collapse
|
2
|
Zeng M, Chen JL, Luo X, Zou YJ, Liu ZN, Dai J, Jiang DZ, Li JJ. Oxygen-Free Csp 3-H Oxidation of Pyridin-2-yl-methanes to Pyridin-2-yl-methanones with Water by Copper Catalysis. Molecules 2023; 28:7587. [PMID: 38005308 PMCID: PMC10673412 DOI: 10.3390/molecules28227587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Aromatic ketones are important pharmaceutical intermediates, especially the pyridin-2-yl-methanone motifs. Thus, synthetic methods for these compounds have gained extensive attention in the last few years. Transition metals catalyze the oxidation of Csp3-H for the synthesis of aromatic ketones, which is arresting. Here, we describe an efficient copper-catalyzed synthesis of pyridin-2-yl-methanones from pyridin-2-yl-methanes through a direct Csp3-H oxidation approach with water under mild conditions. Pyridin-2-yl-methanes with aromatic rings, such as substituted benzene, thiophene, thiazole, pyridine, and triazine, undergo the reaction well to obtain the corresponding products in moderate to good yields. Several controlled experiments are operated for the mechanism exploration, indicating that water participates in the oxidation process, and it is the single oxygen source in this transformation. The current work provides new insights for water-involving oxidation reactions.
Collapse
Affiliation(s)
- Ming Zeng
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China; (M.Z.)
| | - Jia-Le Chen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China; (M.Z.)
| | - Xue Luo
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (X.L.)
| | - Yan-Jiao Zou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China; (M.Z.)
| | - Zhao-Ning Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (X.L.)
| | - Jun Dai
- Analytical and Testing Center, Jiujiang University, Jiujiang 332005, China
| | - Deng-Zhao Jiang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China; (M.Z.)
- Jiujiang Key Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Northwest Jiangxi, Jiujiang 332005, China
| | - Jin-Jing Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (X.L.)
| |
Collapse
|
3
|
Nguyen K, Nguyen V, Tran H, Pham P. Organo-photocatalytic C-H bond oxidation: an operationally simple and scalable method to prepare ketones with ambient air. RSC Adv 2023; 13:7168-7178. [PMID: 36891491 PMCID: PMC9986805 DOI: 10.1039/d3ra00332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Oxidative C-H functionalization with O2 is a sustainable strategy to convert feedstock-like chemicals into valuable products. Nevertheless, eco-friendly O2-utilizing chemical processes, which are scalable yet operationally simple, are challenging to develop. Here, we report our efforts, via organo-photocatalysis, in devising such protocols for catalytic C-H bond oxidation of alcohols and alkylbenzenes to ketones using ambient air as the oxidant. The protocols employed tetrabutylammonium anthraquinone-2-sulfonate as the organic photocatalyst which is readily available from a scalable ion exchange of inexpensive salts and is easy to separate from neutral organic products. Cobalt(ii) acetylacetonate was found to be greatly instrumental to oxidation of alcohols and therefore was included as an additive in evaluating the alcohol scope. The protocols employed a nontoxic solvent, could accommodate a variety of functional groups, and were readily scaled to 500 mmol scale in a simple batch setting using round-bottom flasks and ambient air. A preliminary mechanistic study of C-H bond oxidation of alcohols supported the validity of one possible mechanistic pathway, nested in a more complex network of potential pathways, in which the anthraquinone form - the oxidized form - of the photocatalyst activates alcohols and the anthrahydroquinone form - the relevant reduced form of the photocatalyst - activates O2. A detailed mechanism, which reflected such a pathway and was consistent with previously accepted mechanisms, was proposed to account for formation of ketones from aerobic C-H bond oxidation of both alcohols and alkylbenzenes.
Collapse
Affiliation(s)
- Ky Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Van Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Hieu Tran
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Phong Pham
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| |
Collapse
|
4
|
Ryan A, Dempsey SD, Smyth M, Fahey K, Moody TS, Wharry S, Dingwall P, Rooney DW, Thompson JM, Knipe PC, Muldoon MJ. Continuous Flow Epoxidation of Alkenes Using a Homogeneous Manganese Catalyst with Peracetic Acid. Org Process Res Dev 2023; 27:262-268. [PMID: 36844035 PMCID: PMC9942194 DOI: 10.1021/acs.oprd.2c00222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 01/15/2023]
Abstract
Epoxidation of alkenes is a valuable transformation in the synthesis of fine chemicals. Described herein are the design and development of a continuous flow process for carrying out the epoxidation of alkenes with a homogeneous manganese catalyst at metal loadings as low as 0.05 mol%. In this process, peracetic acid is generated in situ and telescoped directly into the epoxidation reaction, thus reducing the risks associated with its handling and storage, which often limit its use at scale. This flow process lessens the safety hazards associated with both the exothermicity of this epoxidation reaction and the use of the highly reactive peracetic acid. Controlling the speciation of manganese/2-picolinic acid mixtures by varying the ligand:manganese ratio was key to the success of the reaction. This continuous flow process offers an inexpensive, sustainable, and scalable route to epoxides.
Collapse
Affiliation(s)
- Ailbhe
A. Ryan
- Almac
Group, Craigavon BT63 5QD, United Kingdom,Arran
Chemical Company, Roscommon N37 DN24, Ireland,Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom
| | - Seán D. Dempsey
- Almac
Group, Craigavon BT63 5QD, United Kingdom,Arran
Chemical Company, Roscommon N37 DN24, Ireland,Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom
| | - Megan Smyth
- Almac
Group, Craigavon BT63 5QD, United Kingdom
| | - Karen Fahey
- Arran
Chemical Company, Roscommon N37 DN24, Ireland
| | - Thomas S. Moody
- Almac
Group, Craigavon BT63 5QD, United Kingdom,Arran
Chemical Company, Roscommon N37 DN24, Ireland
| | | | - Paul Dingwall
- Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom
| | | | | | - Peter C. Knipe
- Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom,
| | - Mark J. Muldoon
- Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom,
| |
Collapse
|
5
|
Kasper JB, Saisaha P, de Roo M, Groen MJ, Vicens L, Borrell M, de Boer JW, Hage R, Costas M, Browne WR. A Common Active Intermediate in the Oxidation of Alkenes, Alcohols and Alkanes with H 2O 2 and a Mn(II)/Pyridin-2-Carboxylato Catalyst. ChemCatChem 2023; 15:e202201072. [PMID: 37082112 PMCID: PMC10108234 DOI: 10.1002/cctc.202201072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The mechanism and the reactive species involved in the oxidation of alkenes, and alcohols with H2O2, catalysed by an in situ prepared mixture of a MnII salt, pyridine-2-carboxylic acid and a ketone is elucidated using substrate competition experiments, kinetic isotope effect (KIE) measurements, and atom tracking with 18O labelling. The data indicate that a single reactive species engages in the oxidation of both alkenes and alcohols. The primary KIE in the oxidation of benzyl alcohols is ca. 3.5 and shows the reactive species to be selective despite a zero order dependence on substrate concentration, and the high turnover frequencies (up to 30 s-1) observed. Selective 18O labelling identifies the origin of the oxygen atoms transferred to the substrate during oxidation, and is consistent with a highly reactive, e. g., [MnV(O)(OH)] or [MnV(O)2], species rather than an alkylperoxy or hydroperoxy species.
Collapse
Affiliation(s)
- Johann B. Kasper
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Pattama Saisaha
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Maurits de Roo
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Mitchell J. Groen
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaCampus MontiliviGironaE-17071, CataloniaSpain
| | - Margarida Borrell
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaCampus MontiliviGironaE-17071, CataloniaSpain
| | - Johannes W. de Boer
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Ronald Hage
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
- Catexel B.V.BioPartner Center LeidenGalileiweg 82333BDLeidenThe Netherlands
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaCampus MontiliviGironaE-17071, CataloniaSpain
| | - Wesley R. Browne
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
6
|
Bohn A, Sénéchal‐David K, Rebilly J, Herrero C, Leibl W, Anxolabéhère‐Mallart E, Banse F. Heterolytic O-O Bond Cleavage Upon Single Electron Transfer to a Nonheme Fe(III)-OOH Complex. Chemistry 2022; 28:e202201600. [PMID: 35735122 PMCID: PMC9804275 DOI: 10.1002/chem.202201600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 01/05/2023]
Abstract
The one-electron reduction of the nonheme iron(III)-hydroperoxo complex, [FeIII (OOH)(L5 2 )]2+ (L5 2 =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), carried out at -70 °C results in the release of dioxygen and in the formation of [FeII (OH)(L5 2 )]+ following a bimolecular process. This reaction can be performed either with cobaltocene as chemical reductant, or electrochemically. These experimental observations are consistent with the disproportionation of the hydroperoxo group in the putative FeII (OOH) intermediate generated upon reduction of the FeIII (OOH) starting complex. One plausible mechanistic scenario is that this disproportionation reaction follows an O-O heterolytic cleavage pathway via a FeIV -oxo species.
Collapse
Affiliation(s)
- Antoine Bohn
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Jean‐Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-Saclay, CEACNRS91198Gif-sur-YvetteFrance
| | | | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| |
Collapse
|
7
|
Xing Q, Xiao F, Mao G, Deng GJ. A Four-Component Reaction for the Synthesis of Thienopyrrolediones under Transition Metal Free Conditions. Org Lett 2022; 24:4377-4382. [PMID: 35695322 DOI: 10.1021/acs.orglett.2c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A three-starting-material four-component reaction strategy is described to construct thienopyrrolediones (TPDs) from the simplest raw materials, elemental sulfur, aldehydes, and β-ketoamides, under transition metal free conditions. Compared with traditional multistep reaction sequences, this process is simple, efficient, environmentally friendly, and atom-economic and has laid the foundation for further development of an easily synthesized TPD unit.
Collapse
Affiliation(s)
- Qiaoyan Xing
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
8
|
Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RSC Adv 2021; 11:35806-35827. [PMID: 35492773 PMCID: PMC9043427 DOI: 10.1039/d1ra05686g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Riyaz Syed
- Centalla Discovery, JHUB, Jawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad 500085 India
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Kulkarni Kalpana
- Department of Humanities and Sciences (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology Bachupally Hyderabad 500090 India
| | - Moataz Morad
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ismail I Althagafi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
9
|
de Roo CM, Kasper JB, van Duin M, Mecozzi F, Browne W. Off-line analysis in the manganese catalysed epoxidation of ethylene-propylene-diene rubber (EPDM) with hydrogen peroxide. RSC Adv 2021; 11:32505-32512. [PMID: 35495483 PMCID: PMC9041766 DOI: 10.1039/d1ra06222k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
The epoxidation of ethylene-propylene-diene rubber (EPDM) with 5-ethylidene-2-norbornene (ENB) as the diene to epoxidized EPDM (eEPDM) creates additional routes to cross-linking and reactive blending, as well as increasing the polarity and thereby the adhesion to polar materials, e.g., mineral fillers such as silica. The low solubility of apolar, high molecular weight polymers in the polar solvents constrains the catalytic method for epoxidation that can be applied. Here we have applied an in situ prepared catalyst comprising a manganese(ii) salt, sodium picolinate and a ketone to the epoxidation of EPDM rubber with hydrogen peroxide (H2O2) as the oxidant in a solvent mixture, that balances the need for polymer and catalyst/oxidant miscibility and solubility. Specifically, a mixture of cyclohexane and cyclohexanone is used, where cyclohexanone functions as a co-solvent as well as the ketone reagent. Reaction progress was monitored off-line through a combination of Raman and ATR-FTIR spectroscopies, which revealed that the reaction profile and the dependence on the composition of the catalyst are similar to those observed with low molar mass alkene substrates, under similar reaction conditions. The combination of spectroscopies offers a reliable method for off-line reaction monitoring of both the extent of the conversion of unsaturation (Raman) and the extent of epoxidation (FTIR) as well as determining side reactions, such as epoxide ring opening and further, aerobic oxidation. The epoxidation of EPDM described, in contrast to currently available methods, uses a non-scarce manganese catalyst and H2O2, and avoids side reactions, such as those that can occur with peracids. Epoxidation of ethylene-propylene-diene rubber (EPDM), based on 5-ethylidene-2-norbornene, to epoxidized EPDM (eEPDM) opens routes to cross-linking and reactive blending, with increased polarity aiding adhesion to polar materials such as silica.![]()
Collapse
Affiliation(s)
- C Maurits de Roo
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands
| | - Johann B Kasper
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands
| | - Martin van Duin
- Department of Chemical Engineering, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands .,ARLANXEO Performance Elastomers, Innovation P.O. Box 1130 6160BC Geleen The Netherlands
| | - Francesco Mecozzi
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands
| | - Wesley Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
10
|
Badovskaya LA, Poskonin VV, Tyukhteneva ZI, Kozhina ND. 2(5H)-Furanone and 5-Hydroxy-2(5H)-furanone: Reactions and Syntheses Based on Them. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Lubov DP, Talsi EP, Bryliakov KP. Methods for selective benzylic C–H oxofunctionalization of organic compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Recent advancement in oxidation or acceptorless dehydrogenation of alcohols to valorised products using manganese based catalysts. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213241] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem 2020; 12:1037-1069. [PMID: 32349522 DOI: 10.4155/fmc-2019-0198] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer, characterized by uncontrolled malignant neoplasm, is a leading cause of death in both advanced and emerging countries. Although, ample drugs are accessible in the market to intervene with tumor progression, none are totally effective and safe. Natural anthraquinone (AQ) equivalents such as emodin, aloe-emodin, alchemix and many synthetic analogs extend their antitumor activity on different targets including telomerase, topoisomerases, kinases, matrix metalloproteinases, DNA and different phases of cell lines. Nano drug delivery strategies are advanced tools which deliver drugs into tumor cells with minimum drug leakage to normal cells. This review delineates the way AQ derivatives are binding on these targets by abolishing tumor cells to produce anticancer activity and purview of nanoformulations related to AQ analogs.
Collapse
|
15
|
Hydrogen Peroxide as a Green Oxidant for the Selective Catalytic Oxidation of Benzylic and Heterocyclic Alcohols in Different Media: An Overview. CHEMISTRY 2020. [DOI: 10.3390/chemistry2010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Among a plethora of known and established oxidant in organic chemistry, hydrogen peroxide stands in a special position. It is commercially and inexpensively available, highly effective, selective, and more importantly it is compatible with current environmental concerns, dictated by principles of green chemistry. Several chemicals or their intermediates that are important in our daily life such as pharmaceuticals, flavors, fragrances, etc. are products of oxidation of alcohols. In this review, we introduce hydrogen peroxide as an effective, selective, green and privileged oxidant for the catalyzed oxidation of primary and secondary benzylic and heterocyclic alcohols to corresponding carbonyl compounds in different media such as aqueous media, under solvent-free conditions, various organic solvent, and dual-phase system.
Collapse
|
16
|
Waffel D, Alkan B, Fu Q, Chen YT, Schmidt S, Schulz C, Wiggers H, Muhler M, Peng B. Towards Mechanistic Understanding of Liquid-Phase Cinnamyl Alcohol Oxidation with tert-Butyl Hydroperoxide over Noble-Metal-Free LaCo 1-x Fe x O 3 Perovskites. Chempluschem 2020; 84:1155-1163. [PMID: 31943951 DOI: 10.1002/cplu.201900429] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Indexed: 11/09/2022]
Abstract
Noble-metal-free perovskite oxides are promising and well-known catalysts for high-temperature gas-phase oxidation reactions, but their application in selective oxidation reactions in the liquid phase has rarely been studied. We report the liquid-phase oxidation of cinnamyl alcohol over spray-flame synthesized LaCo1-x Fex O3 perovskite nanoparticles with tert-butyl hydroperoxide (TBHP) as the oxidizing agent under mild reaction conditions. The catalysts were characterized by XRD, BET, EDS and elemental analysis. LaCo0.8 Fe0.2 O3 showed the best catalytic properties indicating a synergistic effect between cobalt and iron. The catalysts were found to be stable against metal leaching as proven by hot filtration, and the observed slight deactivation is presumably due to segregation as determined by EDS. Kinetic studies revealed an apparent activation energy of 63.6 kJ mol-1 . Combining kinetic findings with TBHP decomposition as well as control experiments revealed a complex reaction network.
Collapse
Affiliation(s)
- Daniel Waffel
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Baris Alkan
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids and CENIDE Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Qi Fu
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Yen-Ting Chen
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Stefan Schmidt
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids and CENIDE Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Hartmut Wiggers
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids and CENIDE Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Barbieri A, Kasper JB, Mecozzi F, Lanzalunga O, Browne WR. Origins of Catalyst Inhibition in the Manganese-Catalysed Oxidation of Lignin Model Compounds with H 2 O 2. CHEMSUSCHEM 2019; 12:3126-3133. [PMID: 31001914 PMCID: PMC6617720 DOI: 10.1002/cssc.201900689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/13/2019] [Indexed: 05/26/2023]
Abstract
The upgrading of complex bio-renewable feedstock, such as lignocellulose, through depolymerisation benefits from the selective reactions at key functional groups. Applying homogeneous catalysts developed for selective organic oxidative transformations to complex feedstock such as lignin is challenged by the presence of interfering components. The selection of appropriate model compounds is essential in applying new catalytic systems and identifying such interferences. Here, it was shown by using as an example the oxidation of a model substrate containing a β-O-4 linkage with H2 O2 and an in situ-prepared manganese-based catalyst, capable of efficient oxidation of benzylic alcohols, that interference from compounds liberated during the reaction can prevent its application to lignocellulose depolymerisation.
Collapse
Affiliation(s)
- Alessia Barbieri
- Dipartimento di ChimicaUniversita'di Roma “La Sapienza”P.le A. Moro 5I-00185RomeItaly
| | - Johann B. Kasper
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Francesco Mecozzi
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Osvaldo Lanzalunga
- Dipartimento di ChimicaUniversita'di Roma “La Sapienza”P.le A. Moro 5I-00185RomeItaly
| | - Wesley R. Browne
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
18
|
Affiliation(s)
- James D. Grayson
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, U.K
| | | |
Collapse
|
19
|
Liu Y, Wang B. 2-Iodoxybenzenesulfonic Acid-Catalysed oxidation of Primary and Secondary Alcohols with Oxone in Cetyl Trimethylammonium Bromide Micelles at Room Temperature. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/174751914x14031774189763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yangyang Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Boliang Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
20
|
Wang W, Xu D, Sun Q, Sun W. Efficient Aliphatic C−H Bond Oxidation Catalyzed by Manganese Complexes with Hydrogen Peroxide. Chem Asian J 2018; 13:2458-2464. [DOI: 10.1002/asia.201800068] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Wenfang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Center for Excellence in Molecular Synthesis; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Center for Excellence in Molecular Synthesis; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Center for Excellence in Molecular Synthesis; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Center for Excellence in Molecular Synthesis; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
| |
Collapse
|
21
|
Karimpour T, Safaei E, Karimi B, Lee YI. Iron(III) Amine Bis(phenolate) Complex Immobilized on Silica-Coated Magnetic Nanoparticles: A Highly Efficient Catalyst for the Oxidation of Alcohols and Sulfides. ChemCatChem 2017. [DOI: 10.1002/cctc.201701217] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Touraj Karimpour
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P.O. Box 45137-66731, Gava Zang Zanjan Iran
| | - Elham Safaei
- Department of Chemistry; College of Sciences; Shiraz University; Shiraz 71454 Iran
| | - Babak Karimi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P.O. Box 45137-66731, Gava Zang Zanjan Iran
| | - Yong-Ill Lee
- Department of Chemistry; Changwon National University; Changwon 641-773 South Korea
| |
Collapse
|
22
|
Mecozzi F, Dong JJ, Saisaha P, Browne WR. Oxidation of Vicinal Diols to α-Hydroxy Ketones with H 2O 2 and a Simple Manganese Catalyst. European J Org Chem 2017; 2017:6919-6925. [PMID: 29398954 PMCID: PMC5767754 DOI: 10.1002/ejoc.201701314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/07/2022]
Abstract
α-Hydroxy ketones are valuable synthons in organic chemistry. Here we show that oxidation of vic-diols to α-hydroxy ketones with H2O2 can be achieved with an in situ prepared catalyst based on manganese salts and pyridine-2-carboxylic acid. Furthermore the same catalyst is effective in alkene epoxidation, and it is shown that alkene oxidation with the MnII catalyst and H2O2 followed by Lewis acid ring opening of the epoxide and subsequent oxidation of the alkene to α-hydroxy ketones can be achieved under mild (ambient) conditions.
Collapse
Affiliation(s)
- Francesco Mecozzi
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Mathematics and Natural Sciences Nijenborgh 49747 AG Groningen The Netherlands
| | - Jia Jia Dong
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Mathematics and Natural Sciences Nijenborgh 49747 AG Groningen The Netherlands
| | - Pattama Saisaha
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Mathematics and Natural Sciences Nijenborgh 49747 AG Groningen The Netherlands
| | - Wesley R Browne
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Mathematics and Natural Sciences Nijenborgh 49747 AG Groningen The Netherlands
| |
Collapse
|
23
|
Jin W, Zheng P, Wong WT, Law GL. Efficient Selenium-Catalyzed Selective C(sp3)−H Oxidation of Benzylpyridines with Molecular Oxygen. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601065] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weiwei Jin
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hung Hum Kowloon Hong Kong
| | - Poonnapa Zheng
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hung Hum Kowloon Hong Kong
| | - Wing-Tak Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hung Hum Kowloon Hong Kong
| | - Ga-Lai Law
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hung Hum Kowloon Hong Kong
| |
Collapse
|
24
|
Shul’pin GB, Nesterov DS, Shul’pina LS, Pombeiro AJ. A hydroperoxo-rebound mechanism of alkane oxidation with hydrogen peroxide catalyzed by binuclear manganese(IV) complex in the presence of an acid with involvement of atmospheric dioxygen. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Pinto MF, Cardoso BDP, Barroso S, Martins AM, Royo B. Chelating bis-N-heterocyclic carbene complexes of iron(ii) containing bipyridyl ligands as catalyst precursors for oxidation of alcohols. Dalton Trans 2016; 45:13541-6. [PMID: 27506414 DOI: 10.1039/c6dt02718k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chelating bis-N-heterocyclic carbene (bis-NHC) complexes of iron(ii) containing pyridyl ligands have been prepared by the reaction of [FeCl2L] [L = bipy (1), phen (2)] with [LiN(SiMe3)2] and a bis(imidazolium) salt. The [Fe(bis-NHC)L(I)2] complexes were active pre-catalysts in the oxidation of 1-phenylethanol with tert-butyl hydroperoxide in neat conditions, affording a quantitative yield of acetophenone in 4.5 h. The catalyst could be reused up to six cycles giving a turnover number (TON) of 1500. Various secondary alcohols, both aromatic and aliphatic were selectivity oxidised to the corresponding ketones in excellent yields. Compound 1 is stable in acetonitrile solution for ca. 4 h, although after 16 h, it evolves to a mixture of [Fe(bis-NHC)(bipy)2]I2 (3), [Fe(bipy)3](2+) and bis-imidazolium salt. The molecular structure of 3 has been determined by X-ray diffraction studies.
Collapse
Affiliation(s)
- Mara F Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
26
|
Ren L, Wang L, Lü Y, Li G, Gao S. Direct oxidation of the C sp3 –H bonds of N-heterocyclic compounds to give the corresponding ketones using a reusable heterogeneous MnO x -N@C catalyst. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62503-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Saisaha P, Dong JJ, Meinds TG, de Boer JW, Hage R, Mecozzi F, Kasper JB, Browne WR. Mechanism of Alkene, Alkane, and Alcohol Oxidation with H2O2 by an in Situ Prepared MnII/Pyridine-2-carboxylic Acid Catalyst. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pattama Saisaha
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jia Jia Dong
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Tim G. Meinds
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Johannes W. de Boer
- Catexel Ltd, BioPartner Center Leiden, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Ronald Hage
- Catexel Ltd, BioPartner Center Leiden, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Francesco Mecozzi
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Johann B. Kasper
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
28
|
Liu W, Richter SC, Zhang Y, Ackermann L. Manganese(I)-Catalyzed Substitutive C−H Allylation. Angew Chem Int Ed Engl 2016; 55:7747-50. [DOI: 10.1002/anie.201601560] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Weiping Liu
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Sven C. Richter
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Yujiao Zhang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
29
|
Liu W, Richter SC, Zhang Y, Ackermann L. Manganese(I)-Catalyzed Substitutive C−H Allylation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601560] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Weiping Liu
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Sven C. Richter
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Yujiao Zhang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
30
|
Olivo G, Giosia S, Barbieri A, Lanzalunga O, Di Stefano S. Alcohol oxidation with H2O2 catalyzed by a cheap and promptly available imine based iron complex. Org Biomol Chem 2016; 14:10630-10635. [DOI: 10.1039/c6ob01984f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A cheap and easily available catalyst for alcohol oxidation with unexpected selectivity features.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
- I-00185 Rome
- Italy
- Istituto CNR di Metodologie Chimiche (IMC-CNR)
| | - Simone Giosia
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
- I-00185 Rome
- Italy
- Istituto CNR di Metodologie Chimiche (IMC-CNR)
| | - Alessia Barbieri
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
- I-00185 Rome
- Italy
- Istituto CNR di Metodologie Chimiche (IMC-CNR)
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
- I-00185 Rome
- Italy
- Istituto CNR di Metodologie Chimiche (IMC-CNR)
| | - Stefano Di Stefano
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
- I-00185 Rome
- Italy
- Istituto CNR di Metodologie Chimiche (IMC-CNR)
| |
Collapse
|
31
|
Liu W, Bang J, Zhang Y, Ackermann L. Manganese(I)‐Catalyzed C–H Aminocarbonylation of Heteroarenes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507087] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weiping Liu
- Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany) http://www.ackermann.chemie.uni‐goettingen.de/
| | - Jonas Bang
- Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany) http://www.ackermann.chemie.uni‐goettingen.de/
| | - Yujiao Zhang
- Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany) http://www.ackermann.chemie.uni‐goettingen.de/
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg‐August‐Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany) http://www.ackermann.chemie.uni‐goettingen.de/
| |
Collapse
|
32
|
Liu W, Bang J, Zhang Y, Ackermann L. Manganese(I)-Catalyzed C-H Aminocarbonylation of Heteroarenes. Angew Chem Int Ed Engl 2015; 54:14137-40. [DOI: 10.1002/anie.201507087] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/12/2023]
|
33
|
Abdolahzadeh S, de Boer JW, Browne WR. Redox-State Dependent Ligand Exchange in Manganese-Based Oxidation Catalysis. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Landaeta VR, Rodríguez-Lugo RE. Catalytic oxygenation of organic substrates: Toward greener ways for incorporating oxygen. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Ren L, Wang L, Lv Y, Li G, Gao S. Synergistic H4NI-AcOH Catalyzed Oxidation of the Csp(3)-H Bonds of Benzylpyridines with Molecular Oxygen. Org Lett 2015; 17:2078-81. [PMID: 25885281 DOI: 10.1021/acs.orglett.5b00602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxidation of benzylpyridines forming benzoylpyridines was achieved based on a synergistic H4NI-AcOH catalyst and molecular oxygen in high yield under solvent-free conditions. This is the first nonmetallic catalytic system for this oxidation transformation using molecular oxygen as the oxidant. The catalytic system has a wide scope of substrates and excellent chemoselectivity, and this procedure can also be scaled up. The study of a preliminary reaction mechanism demonstrated that the oxidation of the Csp(3)-H bonds of benzylpyridines was promoted by the pyridinium salts formed by AcOH and benzylpyridines. The synergistic effect of H4NI-AcOH was also demonstrated by control experiments.
Collapse
Affiliation(s)
- Lanhui Ren
- †Dalian Institute of Chemical Physics, the Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, DNL 457 Zhongshan Road, Dalian, 116023, P. R. China.,‡Graduate School of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lianyue Wang
- †Dalian Institute of Chemical Physics, the Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, DNL 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Ying Lv
- †Dalian Institute of Chemical Physics, the Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, DNL 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Guosong Li
- †Dalian Institute of Chemical Physics, the Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, DNL 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Shuang Gao
- †Dalian Institute of Chemical Physics, the Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, DNL 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
36
|
Liu W, Zell D, John M, Ackermann L. Mangankatalysierte Synthese voncis-β-Aminosäureestern mittels metallorganischer C-H-Aktivierung von Ketiminen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411808] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Liu W, Zell D, John M, Ackermann L. Manganese-Catalyzed Synthesis ofcis-β-Amino Acid Esters through Organometallic CH Activation of Ketimines. Angew Chem Int Ed Engl 2015; 54:4092-6. [DOI: 10.1002/anie.201411808] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/23/2014] [Indexed: 01/05/2023]
|
38
|
Urgoitia G, Maiztegi A, SanMartin R, Herrero MT, Domínguez E. Aerobic oxidation at benzylic positions catalyzed by a simple Pd(OAc)2/bis-triazole system. RSC Adv 2015. [DOI: 10.1039/c5ra22251f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An extremely active palladium catalyst system for the aerobic oxidation of benzyl alcohols and benzylic C–H oxidation is described.
Collapse
Affiliation(s)
- Garazi Urgoitia
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| | - Ainhoa Maiztegi
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| | - Raul SanMartin
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| | - María Teresa Herrero
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| | - Esther Domínguez
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| |
Collapse
|