1
|
Jakob A, Likozar B, Grilc M. Model-Assisted Optimization of Xylose, Arabinose, Glucose, Mannose, Galactose and Real Hemicellulose Streams Dehydration To (Hydroxymethyl)Furfural and Levulinic Acid. CHEMSUSCHEM 2024:e202400962. [PMID: 38959341 DOI: 10.1002/cssc.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Conversion of hemicellulose streams and the constituent monosaccharides, xylose, arabinose, glucose, mannose, and galactose, was conducted to produce value-added chemicals, including furfural, hydroxymethylfurfural (HMF), levulinic acid and anhydrosugars. The study aimed at developing a kinetic model relevant for direct post-Organosolv hemicellulose conversion. Monosaccharides served as a tool to in detail describe the kinetic behavior and segregate contribution of hydrothermal decomposition and acid catalyzed dehydration at the temperature range of 120-190 °C. Catalyst free aqueous media demonstrated enhanced formation of furanics, while elevated temperatures led to significant saccharide isomerization. The introduction of sulfuric and formic acids maximized furfural yield and significantly reduced HMF concentration by facilitating its rehydration into levulinic acid (46 mol%). Formic acid additionally substantially enhanced formation of anhydrosaccharides. An excellent correlation between modeled and experimental data enabled process optimization to maximize furanic yield in two distinct hemicellulose streams. Sulfuric acid-containing hemicellulose stream achieved the highest furfural yield after 30 minutes at 238 °C, primarily due to the high Ea for pentose dehydration (150-160 kJ mol-1). Contrarily, formic acid-containing hemicellulose stream enabled maximal furfural yield at more moderate temperature and extended reaction time due to its lower Ea for the same reaction step (115-125 kJ mol-1).
Collapse
Affiliation(s)
- Ana Jakob
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
| |
Collapse
|
2
|
Chen X, Liu Q, Wang N, Liu C, Shi J, Liu L. Enhancing biomass conversion: Efficient hemicellulose removal and cellulose saccharification in poplar with FeCl 3 coupled with acidic electrolyzed water pretreatment. Int J Biol Macromol 2023; 253:127600. [PMID: 37871719 DOI: 10.1016/j.ijbiomac.2023.127600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Due to the recalcitrant structure of woody biomass such as poplar, the efficient disassembly and separation of hemicellulose component from woody biomass is crucial for green biomass processing and full component utilization. This study presented an environmentally friendly approach to utilize acidic electrolyzed water (AEW) combined with metal salts and investigated its pretreatment effects on hemicellulose removal and cellulose and lignin retention under different conditions. Meanwhile, the structural properties and enzymatic hydrolysis performance of the pretreated residues were also characterized. As a result, under the optimized pretreatment conditions (0.03 mol/L FeCl3 with AEW at 180 °C for 10 min), hemicellulose removal from poplar wood reached 98.64 %, accompanied by xylose recovery rate of 98.46 %, cellulose retention rate of 93.43 % and lignin retention rate of 94.29 %. Enzymatic hydrolysis rate of the pretreated cellulose-enriched substrate reached 97.65 %. Furthermore, comprehensive structural characterizations revealed that FeCl3 coupled with AEW pretreatment resulted in surface damage to the poplar wood, effective removal of the amorphous hemicellulose component, and partial destruction of the cellulose crystallinity. In conclusion, FeCl3 coupled with AEW pretreatment effectively separates hemicellulose, leading to significant alterations in biomass composition and structure, ultimately resulting in improved enzymatic digestion. These results provide theoretical support for targeted dissociation of hemicellulose and full component utilization of woody biomass.
Collapse
Affiliation(s)
- Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qianjing Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Caoyunrong Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
3
|
Hu SL, Cheng H, Xu RY, Huang JS, Zhang PJ, Qin JN. Conversion of xylose into furfural over Cr/Mg hydrotalcite catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Design and Techno–Economic Analysis of Levulinic Acid Production Process from Biomass by Using Co-product Formic Acid as a Catalyst with Minimal Waste Generation. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Jiang W, Adamopoulos S, Hosseinpourpia R, Walther T, Medved S. Properties and Emissions of Three-Layer Particleboards Manufactured with Mixtures of Wood Chips and Partially Liquefied Bark. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1855. [PMID: 36902971 PMCID: PMC10004268 DOI: 10.3390/ma16051855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Partial liquefaction of residual biomass shows good potential for developing new materials suitable for making bio-based composites. Three-layer particleboards were produced by replacing virgin wood particles with partially liquefied bark (PLB) in the core or surface layers. PLB was prepared by the acid-catalyzed liquefaction of industrial bark residues in polyhydric alcohol. The chemical and microscopic structure of bark and residues after liquefaction were evaluated by means of Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), while the particleboards were tested for their mechanical and water-related properties, as well as their emission profiles. Through a partial liquefaction process, some FTIR absorption peaks of the bark residues were lower than those of raw bark, indicating hydrolysis of chemical compounds. The surface morphology of bark did not change considerably after partial liquefaction. Particleboards with PLB in the core layers showed overall lower densities and mechanical properties (modulus of elasticity, modulus of rupture, and internal bond strength), and were less water-resistant as compared to the ones with PLB used in the surface layers. Formaldehyde emissions from the particleboards were 0.284-0.382 mg/m2·h, and thus, below the E1 class limit required by European Standard EN 13986:2004. The major emissions of volatile organic compounds (VOCs) were carboxylic acids as oxidization and degradation products from hemicelluloses and lignin. The application of PLB in three-layer particleboards is more challenging than in single-layer boards as PLB has different effects on the core and surface layers.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Stergios Adamopoulos
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Vallvägen 9C, 75007 Uppsala, Sweden
| | - Reza Hosseinpourpia
- Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 35195 Växjö, Sweden
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Walther
- Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 35195 Växjö, Sweden
- IKEA Industry AB, Skrivaregatan 5, 21532 Malmö, Sweden
| | - Sergej Medved
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Rožna Dolina C VIII/34, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Song W, Liu H, Zhang J, Sun Y, Peng L. Understanding Hβ Zeolite in 1,4-Dioxane Efficiently Converts Hemicellulose-Related Sugars to Furfural. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weipeng Song
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, China
| | - Huai Liu
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, China
| | - Junhua Zhang
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, China
| | - Yong Sun
- Xiamen key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiamen361102, China
| | - Lincai Peng
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, China
| |
Collapse
|
7
|
Tunable synthesis of furfurylamines or β-amino alcohols via Ru-catalyzed N–H functionalization using biomass-derived polyols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Guo W, Bruining HC, Heeres HJ, Yue J. Efficient synthesis of furfural from xylose over
HCl
catalyst in slug flow microreactors promoted by
NaCl
addition. AIChE J 2022. [DOI: 10.1002/aic.17606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenze Guo
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Herman Carolus Bruining
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Hero Jan Heeres
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Jun Yue
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| |
Collapse
|
9
|
Combination of Autohydrolysis and Catalytic Hydrolysis of Biomass for the Production of Hemicellulose Oligosaccharides and Sugars. REACTIONS 2021. [DOI: 10.3390/reactions3010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three different types of biomass sourced from forestry waste (eucalyptus residues), agricultural waste (wheat straw), and energy crop (miscanthus) were used as starting materials to produce hemicellulosic sugars, furans (furfural and hydroxymethylfurfural), and oligosaccharides. A two-step hybrid process was implemented; biomass was first autohydrolysed without any additive to extract hemicelluloses and dissolve it in water. Then, the hydrolysate was treated with a solid acid catalyst, TiO2-WOx, in order to achieve hydrolysis and produce monomeric sugars and furans. This article investigates the role of the biomass type, autohydrolysis experimental conditions, polymerisation degree and composition of hemicelluloses on the performance of the process coupling autohydrolysis and catalytic hydrolysis. The highest global yields of both oligosaccharides and monomeric sugars were obtained from Eucalyptus (37% and 18%, respectively).
Collapse
|
10
|
Yuan Q, Liu S, Ma MG, Ji XX, Choi SE, Si C. The Kinetics Studies on Hydrolysis of Hemicellulose. Front Chem 2021; 9:781291. [PMID: 34869229 PMCID: PMC8637159 DOI: 10.3389/fchem.2021.781291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The kinetics studies is of great importance for the understanding of the mechanism of hemicellulose pyrolysis and expanding the applications of hemicellulose. In the past years, rapid progress has been paid on the kinetics studies of hemicellulose hydrolysis. In this article, we first introduced the hydrolysis of hemicelluloses via various strategies such as autohydrolysis, dilute acid hydrolysis, catalytic hydrolysis, and enzymatic hydrolysis. Then, the history of kinetic models during hemicellulose hydrolysis was summarized. Special attention was paid to the oligosaccharides as intermediates or substrates, acid as catalyst, and thermogravimetric as analyzer method during the hemicellulose hydrolysis. Furthermore, the problems and suggestions of kinetic models during hemicellulose hydrolysis was provided. It expected that this article will favor the understanding of the mechanism of hemicellulose pyrolysis.
Collapse
Affiliation(s)
- Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Shan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Xing-Xiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Gangwon National University, Chuncheon, South Korea
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
11
|
High-Strength and Low-Cost Biobased Polyurethane Foam Composites Enhanced by Poplar Wood Powder Liquefaction. Polymers (Basel) 2021; 13:polym13172999. [PMID: 34503039 PMCID: PMC8434497 DOI: 10.3390/polym13172999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
An environmentally friendly liquefaction of wood powder was prepared by atmospheric pressure liquefaction technology to replace the non-renewable petroleum polyols in the preparation of polyurethane foam composites. The liquefaction time varied from 0 min to 140 min. The composition of liquefied products and the effects of liquefaction time on the morphology, apparent density and mechanical properties of polyurethane foam composites were investigated. The results showed that the optimal process time for the preparation of wood powder liquefaction products, which could replace traditional petroleum polyols, was 110 min. At this time, polyether polyols are the main liquefaction products, with an average molecular weight in Mn reaching 237 and average molecular weight in Mw reaching 246. The functional group of the liquefied product consisted mainly of hydroxyl, with the highest content of 1042 mg KOH/g and the lowest acid number of 1.6 mg KOH/g. In addition, the surface of the polyurethane foam based on poplar wood is dominated by closed cell foam; thus its foam has good heat insulation and heat preservation properties. At 110 min liquefaction time, the apparent density of polyurethane foam is 0.164 g/cm3 and the compression strength is 850 kPa, which is higher than that of traditional polyurethane foam (768 kPa), which is without wood powder modification. Replacing petroleum polyol with renewable wood powder liquefaction products to prepare biomass-based polyurethane foam composite materials, researching complex chemical changes in different liquefaction stages, and finding the best liquefaction conditions are of great significance to optimize the performance of polyurethane, address the shortage of resources and reduce environmental pollution.
Collapse
|
12
|
Kang X, Wang YY, Wang S, Song X. Xylan and xylose decomposition during hot water pre-extraction: A pH-regulated hydrolysis. Carbohydr Polym 2021; 255:117391. [PMID: 33436220 DOI: 10.1016/j.carbpol.2020.117391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
One of the key issues in the development of biofuels using lignocellulosic feedstocks is to increase the yield of fermented sugar, and simultaneously decrease the generation of fermentation inhibitors. Therefore, it is essential to understand the degradation mechanism of xylan during hot-water pretreatment. We analyzed the hydrothermal degradation products of xylan and xylose under different conditions. Results showed that furfural and formic acid formed from xylose reached a maximum value of 32.56 % and 35.14 %, respectively. By increasing the initial pH of the xylan solution, the furfural concentration can be reduced effectively to 2% and the formation of formic acid was preferred under alkaline conditions. On this basis, we proposed a new hydrothermal degradation pathway of xylan in alkaline solution. The in-depth understanding of xlyan degradation during hot water pre-treatment will be beneficial for improving the efficiency of biofuel production.
Collapse
Affiliation(s)
- Xiheng Kang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yun-Yan Wang
- Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Xueping Song
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
13
|
Wang Y, Zhao D, Liang R, Triantafyllidis KS, Yang W, Len C. Transfer hydrogenation of furfural to furfuryl alcohol over modified Zr-based catalysts using primary alcohols as H-donors. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Su YK, Coxwell CM, Shen S, Miller SA. Polyvinyl alcohol modification with sustainable ketones. Polym Chem 2021. [DOI: 10.1039/d1py00656h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-degradable polyvinyl ketals with high glass transition temperatures (78–127 °C) were made via ketalization of polyvinyl alcohol (PVA) with sustainable ketones.
Collapse
Affiliation(s)
- Yu-Kai Su
- The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Caroline M. Coxwell
- The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Steven Shen
- The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Stephen A. Miller
- The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| |
Collapse
|
15
|
Moyo PS, Matsinha LC, Makhubela BC. Pd(II) and Pt(II) catalysed selective synthesis of furfuryl alcohol: Solvent effects and insights into the mechanism. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Utilization of Partially Liquefied Bark for Production of Particleboards. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bark as a sawmilling residue can be used for producing value-added chemicals and materials. This study investigated the use of partially liquefied bark (PLB) for producing particleboard with or without synthetic adhesives. Maritime pine (Pinus pinaster Ait.) bark was partially liquefied in the presence of ethylene glycol and sulfuric acid. Four types of particleboard panels were prepared with a PLB content of 4.7%, 9.1%, 20%, and 33.3%, respectively. Another five types of particleboard panels were manufactured by using similar amounts of PLB and 10 wt.% of melamine–urea–formaldehyde (MUF) adhesives. Characterization of bark and solid residues of PLB was performed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and automated vapor sorption (AVS). Mechanical and physical properties of the particleboard were tested according to the European standards EN 310 for determining modulus of elasticity and bending strength, EN 317 for determining thickness swelling after immersion in water, and EN 319 for determining internal bond strength. The results showed that the increase in PLB content improved the mechanical strength for the non-MUF boards, and the MUF-bonded boards with up to 20% of PLB met the requirements for interior uses in dry conditions according to EN 312. The non-MUF boards containing 33.3% of PLB and the MUF-bonded boards showed comparable thickness swelling and water absorption levels compared to the reference board.
Collapse
|
17
|
Krzelj V, Ferreira Liberal J, Papaioannou M, van der Schaaf J, Neira d’Angelo MF. Kinetic Model of Xylose Dehydration for a Wide Range of Sulfuric Acid Concentrations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladan Krzelj
- Chemical Reactor Engineering Laboratory, Chemical Engineering and Chemistry Department, Eindhoven University of Technology, Eindhoven, MB 5600, Netherlands
| | - Julia Ferreira Liberal
- Chemical Reactor Engineering Laboratory, Chemical Engineering and Chemistry Department, Eindhoven University of Technology, Eindhoven, MB 5600, Netherlands
| | - Myrto Papaioannou
- Chemical Reactor Engineering Laboratory, Chemical Engineering and Chemistry Department, Eindhoven University of Technology, Eindhoven, MB 5600, Netherlands
| | - John van der Schaaf
- Chemical Reactor Engineering Laboratory, Chemical Engineering and Chemistry Department, Eindhoven University of Technology, Eindhoven, MB 5600, Netherlands
| | - Maria Fernanda Neira d’Angelo
- Chemical Reactor Engineering Laboratory, Chemical Engineering and Chemistry Department, Eindhoven University of Technology, Eindhoven, MB 5600, Netherlands
| |
Collapse
|
18
|
Kim B, Yang J, Kim M, Lee JW. One-pot selective production of levulinic acid and formic acid from spent coffee grounds in a catalyst-free biphasic system. BIORESOURCE TECHNOLOGY 2020; 303:122898. [PMID: 32032939 DOI: 10.1016/j.biortech.2020.122898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
This study introduces the catalyst-free production of levulinic acid (LA) and formic acid (FA) from spent coffee grounds (SCGs) as a starting material in a biphasic system of 1,2-dichloroethane (DCE)-water at temperatures above 160 °C. In addition to the advantage of using the biphasic system attributed to the product equilibrium, DCE served as a source of hydrogen induced by subcritical water (SCW). The effect of temperature, the amount of DIW and DCE, and the pretreatment on SCG (raw or lipid extracted SCG (LE-SCG)) on the overall reaction and humin formation were studied. The maximum conversion of LA and FA was 47 and 29 w/w% of the total convertible monosaccharides in raw SCGs while 43 and 28 w/w% of the conversion were obtained at 180 °C when LE-SCG was used. The solvothermal effects of two media provides a non-catalytic route to utilize undried SCG for the production of LA and FA.
Collapse
Affiliation(s)
- Bora Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongwoo Yang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minji Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
|
20
|
Holade Y, Tuleushova N, Tingry S, Servat K, Napporn TW, Guesmi H, Cornu D, Kokoh KB. Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02446h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent developments in biomass-derivative fuelled electrochemical converters for electricity or hydrogen production together with chemical electrosynthesis have been reviewed.
Collapse
Affiliation(s)
- Yaovi Holade
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Nazym Tuleushova
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Sophie Tingry
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Karine Servat
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| | - Teko W. Napporn
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| | - Hazar Guesmi
- Institut Charles Gerhardt Montpellier
- ICGM – UMR 5253
- Univ. Montpellier
- ENSCM
- CNRS
| | - David Cornu
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - K. Boniface Kokoh
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| |
Collapse
|
21
|
Zhao Y, Xu H, Lu K, Qu Y, Zhu L, Wang S. Experimental and Kinetic Study of Arabinose Conversion to Furfural in Renewable Butanone–Water Solvent Mixture Catalyzed by Lewis Acidic Ionic Liquid Catalyst. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Zhao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Hao Xu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Kaifeng Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Yang Qu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Lingjun Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| |
Collapse
|
22
|
Papaioannou M, Kleijwegt RJT, van der Schaaf J, Neira d’Angelo MF. Furfural Production by Continuous Reactive Extraction in a Millireactor under the Taylor Flow Regime. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myrto Papaioannou
- Laboratory of Chemical Reactor Engineering Department of Chemical Engineering and Chemistry Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Roel J. T. Kleijwegt
- Laboratory of Chemical Reactor Engineering Department of Chemical Engineering and Chemistry Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - John van der Schaaf
- Laboratory of Chemical Reactor Engineering Department of Chemical Engineering and Chemistry Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Maria Fernanda Neira d’Angelo
- Laboratory of Chemical Reactor Engineering Department of Chemical Engineering and Chemistry Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
23
|
Moreno-Marrodan C, Barbaro P, Caporali S, Bossola F. Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania Heterogeneous Catalysts. CHEMSUSCHEM 2018; 11:3649-3660. [PMID: 30106509 DOI: 10.1002/cssc.201801414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The sustainable conversion of vegetable biomass-derived feeds to useful chemicals requires innovative routes meeting environmental and economical criteria. The approach herein pursued is the synthesis of water-tolerant, unconventional solid acid monolithic catalysts based on a mixed niobia-titania skeleton building up a hierarchical open-cell network of meso- and macropores, and tailored for use under continuous-flow conditions. The materials were characterized by spectroscopic, microscopy, and diffraction techniques, showing a reproducible isotropic structure and an increasing Lewis/Brønsted acid sites ratio with increasing Nb content. The catalytic dehydration reaction of xylose to furfural was investigated as a representative application. The efficiency of the catalyst was found to be dramatically affected by the niobia content in the titania lattice. The presence of as low as 2 wt % niobium resulted in the highest furfural yield at 140 °C under continuous-flow conditions, by using H2 O/γ-valerolactone as a safe monophasic solvent system. The interception of a transient 2,5-anhydroxylose species suggested the dehydration process occurs via a cyclic intermediates mechanism. The catalytic activity and the formation of the anhydro intermediate were related to the Lewis acid sites (LAS)/Brønsted acid sites (BAS) ratio and indicated a significant contribution of xylose-xylulose isomerization. No significant catalyst deactivation was observed over 4 days usage.
Collapse
Affiliation(s)
- Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Stefano Caporali
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via Giusti 9, 50121, Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Filippo Bossola
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
24
|
Köchermann J, Mühlenberg J, Klemm M. Kinetics of Hydrothermal Furfural Production from Organosolv Hemicellulose and d-Xylose. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03402] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jakob Köchermann
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Center), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Jana Mühlenberg
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Center), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Marco Klemm
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Center), Torgauer Straße 116, 04347 Leipzig, Germany
| |
Collapse
|
25
|
Xu J, Fu Y, Tian G, Li Q, Liu N, Qin M, Wang Z. Mild and efficient extraction of hardwood hemicellulose using recyclable formic acid/water binary solvent. BIORESOURCE TECHNOLOGY 2018; 254:353-356. [PMID: 29395743 DOI: 10.1016/j.biortech.2018.01.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/01/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Formic acid/water binary solvent extraction with formic acid fraction lower than 77.5% (w/w) of azeotrope was used to extract hemicellulose-derived saccharides from poplar wood at various levels of severity. The highest xylose yield of 77.8% and arabinose yield of 93.5% were obtained at 120 °C and 1 h. To reduce cellulose hydrolysis and facilitate downstream xylose crystallization, mild conditions at 90 °C and 4 h was chosen as optimum severity, which led to the highest xylose fraction of 81.7% in all saccharides extracted, with a remarkable xylose yield of 73.1%. Mass balance analysis showed that 5.84% of xylan was degraded, but only 0.25% of xylan ended up as furfural at optimum severity. The proposed extraction process has high feasibility for industrial application since the low formic acid fraction in solvent allows simple recovery and concentration of used solvent.
Collapse
Affiliation(s)
- Jiayun Xu
- Key Laboratory of Pulp and Paper Science & Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingjuan Fu
- Key Laboratory of Pulp and Paper Science & Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guoyu Tian
- College of Papermaking Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qun Li
- College of Papermaking Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Na Liu
- Key Laboratory of Pulp and Paper Science & Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Menghua Qin
- Laboratory of Organic Chemistry, Taishan University, Taian 271021, China
| | - Zhaojiang Wang
- Key Laboratory of Pulp and Paper Science & Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
26
|
Concept of rice husk biorefining for levulinic acid production integrating three steps: Multi-response optimization, new perceptions and limitations. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
A Bibliometric Study of Scientific Publications regarding Hemicellulose Valorization during the 2000–2016 Period: Identification of Alternatives and Hot Topics. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Zhang X, Bai Y, Cao X, Sun R. Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2017; 238:1-6. [PMID: 28432947 DOI: 10.1016/j.biortech.2017.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Herein, an efficient biphasic pretreatment process was developed to improve the production of furfural (FF) and glucose from Eucalyptus. The influence of formic acid and NaCl on FF production from xylose in water and various biphasic systems was investigated. Results showed that the addition of formic acid and NaCl significantly promoted the FF yield, and the biphasic system of MIBK (methyl isobutyl ketone)/water exhibited the best performance for FF production. Then the Eucalyptus was pretreated in the MIBK/water system, and a maximum FF yield of 82.0% was achieved at 180°C for 60min. Surface of the pretreated Eucalyptus became relatively rough and loose, and its crystallinity index increased obviously due to the removal of hemicelluloses and lignin. The pretreated Eucalyptus samples showed much higher enzymatic hydrolysis rates (26.2-70.7%) than the raw Eucalyptus (14.5%).
Collapse
Affiliation(s)
- Xiudong Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuanyuan Bai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Runcang Sun
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
29
|
Ershova O, Nieminen K, Sixta H. The Role of Various Chlorides on Xylose Conversion to Furfural: Experiments and Kinetic Modeling. ChemCatChem 2017. [DOI: 10.1002/cctc.201700269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Olga Ershova
- Department of Bioproducts and Biosystems; Aalto University; Vuorimiehentie 1 02150 Espoo Finland
| | - Kaarlo Nieminen
- Department of Bioproducts and Biosystems; Aalto University; Vuorimiehentie 1 02150 Espoo Finland
| | - Herbert Sixta
- Department of Bioproducts and Biosystems; Aalto University; Vuorimiehentie 1 02150 Espoo Finland
| |
Collapse
|
30
|
Lopes M, Dussan K, Leahy J, da Silva V. Conversion of d -glucose to 5-hydroxymethylfurfural using Al 2 O 3 -promoted sulphated tin oxide as catalyst. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.05.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
O’Driscoll Á, Leahy J, Curtin T. The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.06.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts 2016. [DOI: 10.3390/catal6120196] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Delbecq F, Wang Y, Len C. Conversion of xylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwave-assisted dehydration. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Kärcher MA, Iqbal Y, Lewandowski I, Senn T. Efficiency of single stage- and two stage pretreatment in biomass with different lignin content. BIORESOURCE TECHNOLOGY 2016; 211:787-791. [PMID: 27067673 DOI: 10.1016/j.biortech.2016.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
In current study the enzymatic glucose yields of miscanthus and wheat straw were compared after single stage- and two stage pretreatment with dilute sulfuric acid at different pretreatment severities. Glucose yields after two stage pretreatment were higher than after single stage pretreatment in miscanthus. Whereas wheat straw had higher glucose yields after single stage pretreatment. The study shows that two stage pretreatment has a negative effect on glucose yield in biomass with low not-acid-degradable lignin content and a positive one in biomass with high not-acid-degradable lignin content. The not-acid-degradable lignin fraction offers a higher degree of protection of the whole lignin structure against chemical attacks by mineral acids. More severe pretreatment conditions were needed to achieve a sufficient breakup of the lignin structure. But more severe conditions enhance resin formation, leading to lower enzyme activity and reduced carbohydrate yields.
Collapse
Affiliation(s)
- M A Kärcher
- University of Hohenheim, Yeast Genetic and Fermentation Technology (150f), Garbenstraße 23, 70599 Stuttgart, Germany.
| | - Y Iqbal
- University of Hohenheim, Biobased Products and Energy Crops (340b), Fruwirthstraße 23, 70599 Stuttgart, Germany
| | - I Lewandowski
- University of Hohenheim, Biobased Products and Energy Crops (340b), Fruwirthstraße 23, 70599 Stuttgart, Germany
| | - T Senn
- University of Hohenheim, Yeast Genetic and Fermentation Technology (150f), Garbenstraße 23, 70599 Stuttgart, Germany
| |
Collapse
|
35
|
Dussan K, Girisuta B, Lopes M, Leahy JJ, Hayes MHB. Effects of Soluble Lignin on the Formic Acid-Catalyzed Formation of Furfural: A Case Study for the Upgrading of Hemicellulose. CHEMSUSCHEM 2016; 9:492-504. [PMID: 26805656 DOI: 10.1002/cssc.201501415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/10/2015] [Indexed: 06/05/2023]
Abstract
A comprehensive study is presented on the conversion of hemicellulose sugars in liquors obtained from the fractionation of Miscanthus, spruce bark, sawdust, and hemp by using formic acid. Experimental tests with varying temperature (130-170 °C), formic acid concentration (10-80 wt%), carbohydrate concentrations, and lignin separation were carried out, and experimental data were compared with predictions obtained by reaction kinetics developed in a previous study. The conversions of xylose and arabinose into furfural were inherently affected by the presence of polymeric soluble lignin, decreasing the maximum furfural yields observed experimentally by up to 24%. These results were also confirmed in synthetic mixtures of pentoses with Miscanthus and commercial alkali lignin. This observation was attributed to side reactions involving intermediate stable sugar species reacting with solubilized lignin during the conversion of xylose into furfural.
Collapse
Affiliation(s)
- Karla Dussan
- Mechanical Engineering Department, National University of Ireland Galway, Galway, Ireland.
| | - Buana Girisuta
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Marystela Lopes
- Chemical and Environmental Sciences Department, University of Limerick, Castletroy, Co., Limerick, Ireland
| | - James J Leahy
- Chemical and Environmental Sciences Department, University of Limerick, Castletroy, Co., Limerick, Ireland
| | - Michael H B Hayes
- Chemical and Environmental Sciences Department, University of Limerick, Castletroy, Co., Limerick, Ireland
| |
Collapse
|