1
|
Cerra B, Venturoni F, Souma M, Ceccarelli G, Lozza AM, Passeri D, De Franco F, Baxendale IR, Pellicciari R, Macchiarulo A, Gioiello A. Development of 3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-sulfate sodium salt (INT-767): Process optimization, synthesis and characterization of metabolites. Eur J Med Chem 2022; 242:114652. [PMID: 36049273 DOI: 10.1016/j.ejmech.2022.114652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Herein we report our synthetic efforts in supporting the development of the bile alcohol sulfate INT-767, a FXR/TGR5 dual agonist with remarkable therapeutic potential for liver disorders. We describe the process development to a final route for large scale preparation and analogues synthesis. Key sequences include Grignard addition, a one-pot two-step shortening-reduction of the carboxylic side chain, and the final sulfation reaction. The necessity for additional steps such as the protection/deprotection of hydroxyl groups at the steroidal body was also evaluated for step-economy and formation of side-products. Critical bottlenecks such as the side chain degradation have been tackled using flow technology before scaling-up individual steps. The final synthetic route may be successfully employed to produce the amount of INT-767 required to support late-stage clinical development of the compound. Furthermore, potential metabolites have been synthesized, characterized and evaluated for their ability to modulate FXR and TGR5 receptors providing key reference standards for future drug investigations, as well as offering further insights into the structure-activity relationships of this class of compounds.
Collapse
Affiliation(s)
- Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Francesco Venturoni
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Maria Souma
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Giada Ceccarelli
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Anna Maria Lozza
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Daniela Passeri
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Francesca De Franco
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Ian R Baxendale
- Department of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - Roberto Pellicciari
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Antonio Macchiarulo
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy.
| |
Collapse
|
2
|
Lin G, Qiu H. Diverse Supports for Immobilization of Catalysts in Continuous Flow Reactors. Chemistry 2022; 28:e202200069. [DOI: 10.1002/chem.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Geyu Lin
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
3
|
Zhang C, Gao Y, Yin J, Zhang Y, Meng J. Metalized hierarchical porous poly-melamine-formaldehyde membrane for continuous-flow reduction of 4-nitrophenol. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Masson E, Maciejewski EM, Wheelhouse KMP, Edwards LJ. Fixed Bed Continuous Hydrogenations in Trickle Flow Mode: A Pharmaceutical Industry Perspective. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward Masson
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Erin M. Maciejewski
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | | | - Lee J. Edwards
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| |
Collapse
|
5
|
Farah J, Gravel E, Doris E, Malloggi F. Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. J Colloid Interface Sci 2022; 613:359-367. [PMID: 35042033 DOI: 10.1016/j.jcis.2021.12.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
A carbon nanotube-based packed-bed microreactor was developed for the on-chip oxidation of silanes. The process is catalyzed by a heterogeneous gold-carbon nanotube hybrid that was embedded in the device using a micrometric restriction zone. Integration of the nanohybrid permitted efficient flow aerobic oxidation of the substrates into the corresponding silanols with high selectivity and under sustainable conditions.
Collapse
Affiliation(s)
- Joseph Farah
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France; Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal. Catalysts 2021. [DOI: 10.3390/catal12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%).
Collapse
|
7
|
Kanta Mahato R, Kumar Mudi P, Deb M, Biswas B. A Direct Metal‐Free Synthetic Approach for the Efficient Production of Privileged Benzimidazoles in Water Medium under Aerobic Condition. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rajani Kanta Mahato
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Prafullya Kumar Mudi
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Mayukh Deb
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| |
Collapse
|
8
|
Liguori F, Moreno-Marrodan C, Barbaro P. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chem Soc Rev 2021; 49:6329-6363. [PMID: 32749443 DOI: 10.1039/d0cs00179a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol A is an oil-derived, large market volume chemical with a wide spectrum of applications in plastics, adhesives and thermal papers. However, bisphenol A is not considered safe due to its endocrine disrupting properties and reproductive toxicity. Several functional substitutes of bisphenol A have been proposed in the literature, produced from plant biomass. Unless otherwise specified, the present review covers the most significant contributions that appeared in the time span January 2015-August 2019, describing the sustainable catalytic synthesis of rigid diols from biomass derivatives. The focus is thereupon on heterogeneous catalysis, use of green solvents and mild conditions, cascade processes in one-pot, and continuous flow setups. More than 500 up-to-date references describe the various substitutes proposed and the catalytic methods for their manufacture, broken down according to the main biomass types from which they originate.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
9
|
Continuous 2-Methyl-3-butyn-2-ol Selective Hydrogenation on Pd/γ-Al2O3 as a Green Pathway of Vitamin A Precursor Synthesis. Catalysts 2021. [DOI: 10.3390/catal11040501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, the effect of pretreatment conditions (10% H2/Ar flow rate 25 mL/min and 400 °C, 3 h or 600 °C, 17 h) on the catalytic performance of 1 wt.% Pd/γ-Al2O3 has been evaluated for hydrogenation of 2-methyl-3-butyn-2-ol in continuous-flow mode. Two palladium catalysts have been tested under different conditions of pressure and temperature and characterized using various physicochemical techniques. The catalytic performance of red(400 °C)-Pd/γ-Al2O3 and red(600 °C)-Pd/γ-Al2O3 are affected by the coexistence of several related factors like the competition between PdH and PdCx formation during the reaction, structure sensitivity, hydrogen spillover to the alumina support and presence or absence of Pd–Al species. High-temperature reduction leads to formation of Pd–Al species in addition to pure Pd. The Pd–Al species which reveal unique electronic properties by decreasing the Pdδ− surface concentration via electron transfer from Pd to Al, leading to a weaker Pd–Alkyl bonding, additionally assisted by the hydrogen spillover, are the sites of improved semi-hydrogenation of 2-methyl-3-butyn-2-ol towards 2-methyl-3-buten-2-ol (97%)—an important intermediate for vitamin A synthesis.
Collapse
|
10
|
Vásquez-Céspedes S, Betori RC, Cismesia MA, Kirsch JK, Yang Q. Heterogeneous Catalysis for Cross-Coupling Reactions: An Underutilized Powerful and Sustainable Tool in the Fine Chemical Industry? Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00041] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Suhelen Vásquez-Céspedes
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Rick C. Betori
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Megan A. Cismesia
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Janelle K. Kirsch
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Qiang Yang
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
11
|
Yu T, Jiao J, Song P, Nie W, Yi C, Zhang Q, Li P. Recent Progress in Continuous-Flow Hydrogenation. CHEMSUSCHEM 2020; 13:2876-2893. [PMID: 32301233 DOI: 10.1002/cssc.202000778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 06/11/2023]
Abstract
To achieve a safe, efficient, and sustainable (even fully automated) production for the continuous-flow hydrogenation reactions, which is among the most often used reactions in chemical synthesis, new catalyst types and immobilization methods as well as flow reactors and technologies have been developed over the last years; in addition, these approaches have been combined with new and transformational technologies in other fields such as artificial intelligence. Thus, attention from academic and industry practitioners has increasingly focused on improving the performance of hydrogenation in flow mode by reducing the reaction times, increasing selectivities, and achieve safe operation. This Minireview aims to summarize the most recent research results on this topic with focus on the advantages, current limitations, and future directions of flow chemistry.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- Departement of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peidong Song
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenzheng Nie
- Departement of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chunhai Yi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Pengfei Li
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
12
|
Bajada MA, Vijeta A, Savateev A, Zhang G, Howe D, Reisner E. Visible-Light Flow Reactor Packed with Porous Carbon Nitride for Aerobic Substrate Oxidations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8176-8182. [PMID: 31962048 DOI: 10.1021/acsami.9b19718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A triphasic photocatalytic reactor employing a mesoporous carbon nitride photocatalyst and aerobic O2 was assembled to operate under continuous flow conditions. This reactor design allows for facile downstream processing and reusability in multiple flow cycles. The selective aerobic oxidation of alcohols and amines was chosen to demonstrate the applicability and performance advantage of this flow approach compared to that of conventional batch photochemistry. This precious-metal-free photocatalytic flow system operates under benign reaction conditions (visible light, low pressure, and mild temperature) and will stimulate the exploration of other oxidative reactions in a sustainable, scalable, and affordable manner.
Collapse
Affiliation(s)
- Mark A Bajada
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Arjun Vijeta
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Aleksandr Savateev
- Department of Colloid Chemistry , Max Planck Institute of Colloids and Interfaces , Potsdam 14476 , Germany
| | - Guigang Zhang
- Department of Colloid Chemistry , Max Planck Institute of Colloids and Interfaces , Potsdam 14476 , Germany
| | - Duncan Howe
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Erwin Reisner
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
13
|
Alwakwak AA, He Y, Almuslem A, Senter M, Itta AK, Rezaei F, Rownaghi AA. Metal- and solvent-free synthesis of aminoalcohols under continuous flow conditions. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00396g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multifunctional organocatalysts were immobilized on porous hollow fiber polymer and used as intelligent and cooperative heterogeneous catalysts and continuous flow reactor for sustainable chemical transformation.
Collapse
Affiliation(s)
- Abdo-Alslam Alwakwak
- Department of Chemical & Biochemical Engineering
- Missouri University of Science and Technology
- Rolla
- USA
| | - Yingxin He
- Department of Chemical & Biochemical Engineering
- Missouri University of Science and Technology
- Rolla
- USA
| | - Ahmed Almuslem
- Department of Chemical & Biochemical Engineering
- Missouri University of Science and Technology
- Rolla
- USA
| | - Matthew Senter
- Department of Chemical & Biochemical Engineering
- Missouri University of Science and Technology
- Rolla
- USA
| | - Arun K. Itta
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering
- Missouri University of Science and Technology
- Rolla
- USA
| | - Ali A. Rownaghi
- Department of Chemical & Biochemical Engineering
- Missouri University of Science and Technology
- Rolla
- USA
| |
Collapse
|
14
|
Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem Rev 2019; 120:986-1041. [PMID: 31725267 DOI: 10.1021/acs.chemrev.9b00187] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tony Jin
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Luis de la Garza
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D. Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
15
|
Brandão P, Pineiro M, Pinho e Melo TMVD. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pedro Brandão
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
- Centro de Química de Évora; Institute for Research and Advanced Studies; University of Évora; 7000 Évora Portugal
| | - Marta Pineiro
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
| | | |
Collapse
|
16
|
Pandey AM, Agalave SG, Vinod CP, Gnanaprakasam B. MnO 2 @Fe 3 O 4 Magnetic Nanoparticles as Efficient and Recyclable Heterogeneous Catalyst for Benzylic sp 3 C-H Oxidation. Chem Asian J 2019; 14:3414-3423. [PMID: 31418537 DOI: 10.1002/asia.201900810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Herein, we report a highly chemoselective and efficient heterogeneous MnO2 @Fe3 O4 MNP catalyst for the oxidation of benzylic sp3 C-H group of ethers using TBHP as a green oxidant to afford ester derivatives in high yield under batch/continuous flow module. This catalyst was also effective for the benzylic sp3 C-H group of methylene derivatives to furnish the ketone in high yield which can be easily integrated into continuous flow condition for scale up. The catalyst is fully characterized by spectroscopic techniques and it was found that 0.424 % MnO2 @Fe3 O4 catalyzes the reaction; the magnetic nanoparticles of this catalyst could be easily recovered from the reaction mixture. The recovered catalyst was recycled for twelve cycles without any loss of the catalytic activity. The advantages of MnO2 @Fe3 O4 MNP are its catalytic activity, easy preparation, recovery, and recyclability, gram scale synthesis with a TOF of up to 14.93 h-1 and low metal leaching during the reaction.
Collapse
Affiliation(s)
- Akanksha M Pandey
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-, 411008, India
| | - Sandip G Agalave
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-, 411008, India
| | | | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-, 411008, India
| |
Collapse
|
17
|
|
18
|
Sustainable processes for the catalytic synthesis of safer chemical substitutes of N-methyl-2-pyrrolidone. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Parvathalu N, Agalave SG, Mohanta N, Gnanaprakasam B. Reversible chemoselective transetherification of vinylogous esters using Fe-catalyst under additive free conditions. Org Biomol Chem 2019; 17:3258-3266. [PMID: 30847455 DOI: 10.1039/c9ob00307j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An additive/Brønsted acid/base free, highly efficient and chemoselective transetherification of electron deficient vinylogous esters and water mediated de-alkylation using an earth-abundant Fe-catalyst under very mild reaction conditions is described. This reaction is highly selective to primary alcohols over secondary alcohols, has good functional group tolerance, is scalable to gram scale and a purification free sequential transetherification in a continuous flow mode is demonstrated.
Collapse
Affiliation(s)
- Nenavath Parvathalu
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India.
| | | | | | | |
Collapse
|
20
|
Zhang J, Chen J, Peng S, Peng S, Zhang Z, Tong Y, Miller PW, Yan XP. Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chem Soc Rev 2019; 48:2566-2595. [DOI: 10.1039/c8cs00657a] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous materials confined within capillary columns/microfluidic devices are discussed, and progress in chromatographic and membrane separations and catalysis is reviewed.
Collapse
Affiliation(s)
- Jianyong Zhang
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Junxing Chen
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Sheng Peng
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Shuyin Peng
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Zizhe Zhang
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Yexiang Tong
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | | | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology
- International Joint Laboratory on Food Safety
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
21
|
Zhou J, Zhang C, Wang Y. Nanoporous block copolymer membranes immobilized with gold nanoparticles for continuous flow catalysis. Polym Chem 2019. [DOI: 10.1039/c8py01789a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nanoporous polymers with functionalizable surfaces are desired in the preparation of reactors for continuous flow catalysis.
Collapse
Affiliation(s)
- Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing
| | - Chenxu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing
| |
Collapse
|
22
|
Chaudhari MB, Mohanta N, Pandey AM, Vandana M, Karmodiya K, Gnanaprakasam B. Peroxidation of 2-oxindole and barbituric acid derivatives under batch and continuous flow using an eco-friendly ethyl acetate solvent. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00068b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have demonstrated the magnetically retrievable Fe(OH)3Fe3O4catalyzed C–H peroxidation of 2-oxindole and barbituric acid derivatives under batch and continuous flow process for the first time.
Collapse
Affiliation(s)
- Moreshwar B. Chaudhari
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Nirmala Mohanta
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Akanksha M. Pandey
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Madhusoodhanan Vandana
- Department of Biology
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Krishanpal Karmodiya
- Department of Biology
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Boopathy Gnanaprakasam
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| |
Collapse
|
23
|
Mimura N, Muramatsu N, Hiyoshi N, Sato O, Masuda Y, Yamaguchi A. Continuous Catalytic Oxidation of Glycerol to Carboxylic Acids Using Nanosized Gold/Alumina Catalysts and a Liquid-Phase Flow Reactor. ACS OMEGA 2018; 3:13862-13868. [PMID: 31458084 PMCID: PMC6645304 DOI: 10.1021/acsomega.8b01191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/01/2018] [Indexed: 06/10/2023]
Abstract
Here, we report the development of catalysts comprising highly dispersed Au on an alumina (Al2O3) support for the oxidation of glycerol to high-value carboxylic acids in a liquid-phase flow reactor. The catalysts were prepared by means of a deposition-precipitation method. To ensure that the catalysts could be used for long-term catalytic conversions in a liquid-phase flow reactor, we chose an alumina support with high temperature stability and a particle size (50-200 μm) large enough to prevent leakage of the catalyst from the reactor. One of the five catalysts had a high catalytic activity for the conversion of glycerol to the high-value carboxylic acids, glyceric acid and tartronic acid (conversion of glycerol >70%), and the catalyst retained its catalytic activity over long-term use (up to 1770 min). Pretreatment of the catalyst with fructose, a mild reductant, increased the activity of the catalyst. Scanning transmission electron microscopy revealed three Au species highly dispersed on the surface of the alumina support-Au nanoparticles (mode = 7.5-10 nm), Au clusters (1-2 nm), and atomic Au.
Collapse
Affiliation(s)
- Naoki Mimura
- E-mail: . Phone: +81-29-861-8460. Fax: +81-22-237-5226
| | | | | | | | | | | |
Collapse
|
24
|
Moreno-Marrodan C, Barbaro P, Caporali S, Bossola F. Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania Heterogeneous Catalysts. CHEMSUSCHEM 2018; 11:3649-3660. [PMID: 30106509 DOI: 10.1002/cssc.201801414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The sustainable conversion of vegetable biomass-derived feeds to useful chemicals requires innovative routes meeting environmental and economical criteria. The approach herein pursued is the synthesis of water-tolerant, unconventional solid acid monolithic catalysts based on a mixed niobia-titania skeleton building up a hierarchical open-cell network of meso- and macropores, and tailored for use under continuous-flow conditions. The materials were characterized by spectroscopic, microscopy, and diffraction techniques, showing a reproducible isotropic structure and an increasing Lewis/Brønsted acid sites ratio with increasing Nb content. The catalytic dehydration reaction of xylose to furfural was investigated as a representative application. The efficiency of the catalyst was found to be dramatically affected by the niobia content in the titania lattice. The presence of as low as 2 wt % niobium resulted in the highest furfural yield at 140 °C under continuous-flow conditions, by using H2 O/γ-valerolactone as a safe monophasic solvent system. The interception of a transient 2,5-anhydroxylose species suggested the dehydration process occurs via a cyclic intermediates mechanism. The catalytic activity and the formation of the anhydro intermediate were related to the Lewis acid sites (LAS)/Brønsted acid sites (BAS) ratio and indicated a significant contribution of xylose-xylulose isomerization. No significant catalyst deactivation was observed over 4 days usage.
Collapse
Affiliation(s)
- Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Stefano Caporali
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via Giusti 9, 50121, Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Filippo Bossola
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
25
|
Liu A, Yang L, Traulsen CHH, Cornelissen JJLM. Immobilization of catalytic virus-like particles in a flow reactor. Chem Commun (Camb) 2018. [PMID: 28640305 DOI: 10.1039/c7cc03024j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A functional microfluidic reactor is constructed by the immobilization of gold containing virus-based protein cages that catalyze the reduction of nitro-arenes with high efficiency.
Collapse
Affiliation(s)
- A Liu
- Biomolecular Nanotechnology (BNT), MESA+ Institute for Nanotechnology, University of Twente, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Calcio Gaudino E, Manzoli M, Carnaroglio D, Wu Z, Grillo G, Rotolo L, Medlock J, Bonrath W, Cravotto G. Sonochemical preparation of alumina-spheres loaded with Pd nanoparticles for 2-butyne-1,4-diol semi-hydrogenation in a continuous flow microwave reactor. RSC Adv 2018; 8:7029-7039. [PMID: 35540310 PMCID: PMC9078474 DOI: 10.1039/c8ra00331a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
A novel protocol for microwave-assisted alkyne semi-hydrogenation under heterogeneous catalysis in a continuous flow reactor is reported herein. This challenging task has been accomplished using a multifaceted strategy which includes the ultrasound-assisted preparation of Pd nanoparticles (average Ø 3.0 ± 0.5 nm) that were synthesized on the μ-metric pores of sintered alumina spheres (Ø 0.8 mm) and a continuous flow reaction under H2 (flow rate 7.5 mL min-1) in a microwave reactor (counter-pressure 4.5 bar). The semi-hydrogenation of 2-butyne-1,4-diol in ethanol was chosen as a model reaction for the purposes of optimization. The high catalyst efficiency of the process, in spite of the low Pd loading (Pd content 111.15 mg kg-1 from ICP-MS), is due to the pivotal role of ultrasound in generating a regular distribution of Pd nanoparticles across the entire support surface. Ultrasound promotes the nucleation, rather than the growth, of crystalline Pd nanoparticles and does so within a particularly narrow Gaussian size distribution. High conversion (>90.5%) and selectivity to (Z)-2-butene-1,4-diol (95.20%) have been achieved at an alkyne solution flow rate of 10 mL min-1. The lead-free, alumina-stabilized Pd catalyst was fully characterized by TEM, HR-TEM, EDX, IR, XRPD and AAS. Highly dispersed Pd nanoparticles have proven themselves to be stable under the reaction conditions employed. The application of the method is subject to the dielectric properties of substrates and solvents, and is therefore hardly applicable to apolar alkynes. Considering the small volume of the reaction chamber, microwave-assisted flow hydrogenation has proven itself to be a safe procedure and one that is suitable for further scaling up to industrial application.
Collapse
Affiliation(s)
- Emanuela Calcio Gaudino
- Dipartimento di Scienza e Tecnologia del Farmaco, NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Maela Manzoli
- Dipartimento di Scienza e Tecnologia del Farmaco, NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Diego Carnaroglio
- Dipartimento di Scienza e Tecnologia del Farmaco, NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin Via P. Giuria 9 10125 Turin Italy
- Milestone srl Via Fatebenefratelli, 1-5 Sorisole 24010 Italy
| | - Zhilin Wu
- Dipartimento di Scienza e Tecnologia del Farmaco, NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Giorgio Grillo
- Dipartimento di Scienza e Tecnologia del Farmaco, NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Laura Rotolo
- Dipartimento di Scienza e Tecnologia del Farmaco, NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Jonathan Medlock
- DSM Nutritional Products Ltd., Research and Development PO Box 2676 4002 Basel Switzerland
| | - Werner Bonrath
- DSM Nutritional Products Ltd., Research and Development PO Box 2676 4002 Basel Switzerland
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin Via P. Giuria 9 10125 Turin Italy
| |
Collapse
|
27
|
Carrillo AI, Llanes P, Pericàs MA. A versatile, immobilized gold catalyst for the reductive amination of aldehydes in batch and flow. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00101d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A process for the reductive amination of aldehydes in continuous flow catalyzed by gold nanoparticles immobilized onto mesoporous silica has been developed.
Collapse
Affiliation(s)
- Adela I. Carrillo
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- 43007 Tarragona
- Spain
| | - Patricia Llanes
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- 43007 Tarragona
- Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- 43007 Tarragona
- Spain
- Departament de Química Inorgànica i Orgànica
| |
Collapse
|
28
|
Ötvös SB, Mészáros R, Varga G, Kocsis M, Kónya Z, Kukovecz Á, Pusztai P, Sipos P, Pálinkó I, Fülöp F. A mineralogically-inspired silver–bismuth hybrid material: an efficient heterogeneous catalyst for the direct synthesis of nitriles from terminal alkynes. GREEN CHEMISTRY 2018. [DOI: 10.1039/c7gc02487h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A silver-containing hybrid material is reported as an effective heterogeneous catalyst for the direct synthesis of organic nitriles from terminal alkynes.
Collapse
|
29
|
Costa NJS, Vono LLR, Wojcieszak R, Teixiera-Neto É, Philippot K, Rossi LM. One-pot organometallic synthesis of alumina-embedded Pd nanoparticles. Dalton Trans 2017; 46:14318-14324. [PMID: 29019367 DOI: 10.1039/c7dt02792c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a one pot organometallic strategy to access alumina-embedded Pd nanoparticles. Unexpectedly, the decomposition of the organometallic complex tris(dibenzylideneacetone)dipalladium(0), Pd2(dba)3, by dihydrogen in the presence of aluminum isopropoxide, Al(iPrO)3, and without extra stabilizers, was found to be an efficient method to generate a Pd colloidal solution. Careful characterization studies revealed that the so-obtained Pd nanoparticles were stabilized by an aluminum isopropoxide tetramer and 1,5-diphenyl-pentan-3-one, which was produced after reduction of the dba ligand from the organometallic precursor. Moreover, calcination of the obtained nanomaterial in air at 773 K for 2 h resulted in a nanocomposite material containing Pd nanoparticles embedded in Al2O3. This stabilization strategy opens new possibilities for the preparation of transition metal nanoparticles embedded in oxides.
Collapse
Affiliation(s)
- Natália J S Costa
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Osako T, Torii K, Hirata S, Uozumi Y. Chemoselective Continuous-Flow Hydrogenation of Aldehydes Catalyzed by Platinum Nanoparticles Dispersed in an Amphiphilic Resin. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02604] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takao Osako
- Institute for Molecular Science (IMS) and JST ACCEL, Okazaki, Aichi 444-8787, Japan
| | - Kaoru Torii
- Institute for Molecular Science (IMS) and JST ACCEL, Okazaki, Aichi 444-8787, Japan
| | - Shuichi Hirata
- Institute for Molecular Science (IMS) and JST ACCEL, Okazaki, Aichi 444-8787, Japan
| | - Yasuhiro Uozumi
- Institute for Molecular Science (IMS) and JST ACCEL, Okazaki, Aichi 444-8787, Japan
- Riken Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
31
|
Ortega-Muñoz M, Blanco V, Hernandez-Mateo F, Lopez-Jaramillo FJ, Santoyo-Gonzalez F. Catalytic Materials Based on Surface Coating with Poly(ethyleneimine)-Stabilized Gold Nanoparticles. ChemCatChem 2017. [DOI: 10.1002/cctc.201700776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mariano Ortega-Muñoz
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Victor Blanco
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - F. Javier Lopez-Jaramillo
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| |
Collapse
|
32
|
Liguori F, Barbaro P, Said B, Galarneau A, Santo VD, Passaglia E, Feis A. Unconventional Pd@Sulfonated Silica Monoliths Catalysts for Selective Partial Hydrogenation Reactions under Continuous Flow. ChemCatChem 2017. [DOI: 10.1002/cctc.201700381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Bilel Said
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS; Université de Montpellier-ENSCM, ENSCM; 8 rue de l'Ecole Normale 34296 Montpellier Cedex 05 France
| | - Anne Galarneau
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS; Université de Montpellier-ENSCM, ENSCM; 8 rue de l'Ecole Normale 34296 Montpellier Cedex 05 France
| | - Vladimiro Dal Santo
- Consiglio Nazionale delle Ricerche; Istituto di Scienze e Tecnologie Molecolari; Via Golgi 19 20133 Milano Italy
| | - Elisa Passaglia
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Moruzzi 1 56124 Pisa Italy
| | - Alessandro Feis
- Department of Chemistry; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
33
|
Koga H, Namba N, Takahashi T, Nogi M, Nishina Y. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis. CHEMSUSCHEM 2017; 10:2560-2565. [PMID: 28394501 PMCID: PMC5499728 DOI: 10.1002/cssc.201700576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 05/03/2023]
Abstract
Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained.
Collapse
Affiliation(s)
- Hirotaka Koga
- The Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbarakiOsaka567-0047Japan
| | - Naoko Namba
- The Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbarakiOsaka567-0047Japan
| | - Tsukasa Takahashi
- The Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbarakiOsaka567-0047Japan
| | - Masaya Nogi
- The Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbarakiOsaka567-0047Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary ScienceOkayama University3-1-1 TsushimanakaKita-kuOkayama700-8530Japan
| |
Collapse
|
34
|
Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's Guide to Flow Chemistry ∥. Chem Rev 2017; 117:11796-11893. [PMID: 28570059 DOI: 10.1021/acs.chemrev.7b00183] [Citation(s) in RCA: 1065] [Impact Index Per Article: 133.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Collapse
Affiliation(s)
- Matthew B Plutschack
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
35
|
He Y, Rezaei F, Kapila S, Rownaghi AA. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16288-16295. [PMID: 28463558 DOI: 10.1021/acsami.7b04092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.
Collapse
Affiliation(s)
- Yingxin He
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology , 1101 North State Street, Rolla, Missouri 65409, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology , 1101 North State Street, Rolla, Missouri 65409, United States
| | - Shubhender Kapila
- Department of Chemistry, Missouri University of Science and Technology , 400 West 11th Street, Rolla, Missouri 65409, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology , 1101 North State Street, Rolla, Missouri 65409, United States
| |
Collapse
|
36
|
Moreno-Marrodan C, Liguori F, Barbaro P. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes. Beilstein J Org Chem 2017; 13:734-754. [PMID: 28503209 PMCID: PMC5405685 DOI: 10.3762/bjoc.13.73] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/29/2017] [Indexed: 12/19/2022] Open
Abstract
The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.
Collapse
Affiliation(s)
- Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
37
|
Giorgi PD, Elizarov N, Antoniotti S. Selective Oxidation of Activated Alcohols by Supported Gold Nanoparticles under an Atmospheric Pressure of O2
: Batch and Continuous-Flow Studies. ChemCatChem 2017. [DOI: 10.1002/cctc.201700179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pascal D. Giorgi
- CNRS, Institut de Chimie de Nice; Université Cote d'Azur; Parc Valrose 06108 Nice cedex 2 France
| | - Nelli Elizarov
- CNRS, Institut de Chimie de Nice; Université Cote d'Azur; Parc Valrose 06108 Nice cedex 2 France
| | - Sylvain Antoniotti
- CNRS, Institut de Chimie de Nice; Université Cote d'Azur; Parc Valrose 06108 Nice cedex 2 France
| |
Collapse
|
38
|
Pélisson CH, Nakanishi T, Zhu Y, Morisato K, Kamei T, Maeno A, Kaji H, Muroyama S, Tafu M, Kanamori K, Shimada T, Nakanishi K. Grafted Polymethylhydrosiloxane on Hierarchically Porous Silica Monoliths: A New Path to Monolith-Supported Palladium Nanoparticles for Continuous Flow Catalysis Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:406-412. [PMID: 27966866 DOI: 10.1021/acsami.6b12653] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymethylhydrosiloxane has been grafted on the surface of a hierarchically porous silica monolith using a facile catalytic reaction between Si-H and silanol to anchor the polymer. This easy methodology leads to the functionalization of the surface of a silica monolith, where a large amount of free Si-H bonds remain available for reducing metal ions in solution. Palladium nanoparticles of 15 nm have been synthesized homogeneously inside the mesopores of the monolith without any stabilizers, using a flow of a solution containing Pd2+. This monolith was used as column-type fixed bed catalyst for continuous flow hydrogenation of styrene and selective hydrogenation of 3-hexyn-1-ol, in each case without a significant decrease of the catalytic activity after several hours or days. Conversion, selectivity, and stereoselectivity of the alkyne hydrogenation can be tuned by flow rates of hydrogen and the substrate solution, leading to high productivity (1.57 mol g(Pd)-1 h-1) of the corresponding cis-alkene.
Collapse
Affiliation(s)
- Carl-Hugo Pélisson
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiro Nakanishi
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yang Zhu
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kei Morisato
- GL Sciences Inc./Kyoto University , Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiyuki Kamei
- Department of Chemical Engineering, Nara National College of Technology , 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Ayaka Maeno
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Shunki Muroyama
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology , Toyama College 13 Hongo-machi, Toyama 939-8630, Japan
| | - Masamoto Tafu
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology , Toyama College 13 Hongo-machi, Toyama 939-8630, Japan
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toyoshi Shimada
- Department of Chemical Engineering, Nara National College of Technology , 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Kazuki Nakanishi
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
39
|
Yasukawa T, Miyamura H, Kobayashi S. Chiral Ligand-Modified Metal Nanoparticles as Unique Catalysts for Asymmetric C–C Bond-Forming Reactions: How Are Active Species Generated? ACS Catal 2016. [DOI: 10.1021/acscatal.6b02446] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tomohiro Yasukawa
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Miyamura
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu̅ Kobayashi
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Gas phase hydrotreatment of chlorophenols over Pd catalysts as an alternative route to cyclohexanone. REACTION KINETICS MECHANISMS AND CATALYSIS 2016. [DOI: 10.1007/s11144-016-1046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Shrivastava KC, Chappa S, Sengupta A, Srivastava AP, Pandey AK, Ramakumar KL. Palladium Nanoparticles Hosted on Hydrazine-Grafted Magnetite and Silica Particles to Catalyze the Reduction of Oxymetal Ions with Formic Acid. ChemCatChem 2016. [DOI: 10.1002/cctc.201600575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Komal C. Shrivastava
- Radioanalytical Chemistry Division; Bhabha Atomic Research Centre; Trombay Mumbai- 400 085 India
- Homi Bhabha National Institute; Anushakti Nagar Mumbai- 400 094 India
| | - Sankararao Chappa
- Radiochemistry Division; Bhabha Atomic Research Centre, Trombay, Mumbai-; 400 085 India
| | - Arijit Sengupta
- Radiochemistry Division; Bhabha Atomic Research Centre, Trombay, Mumbai-; 400 085 India
| | - Amit P. Srivastava
- Mechanical Metallurgy Division; Bhabha Atomic Research Centre; Trombay Mumbai- 400 085 India
| | - Ashok K. Pandey
- Radiochemistry Division; Bhabha Atomic Research Centre, Trombay, Mumbai-; 400 085 India
| | - Karanam L. Ramakumar
- Homi Bhabha National Institute; Anushakti Nagar Mumbai- 400 094 India
- Radiochemistry & Isotope Group; Bhabha Atomic Research Centre; Trombay Mumbai- 400 085 India
| |
Collapse
|
42
|
Levartovsky Y, Gross E. Using operando Microspectroscopy to Uncover the Correlations Between the Electronic Properties of Dendrimer-Encapsulated Metallic Nanoparticles and their Catalytic Reactivity in π-Bond Activation Reactions. Top Catal 2016. [DOI: 10.1007/s11244-016-0689-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chem Rev 2016; 116:10276-341. [PMID: 26935706 DOI: 10.1021/acs.chemrev.5b00707] [Citation(s) in RCA: 912] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
Collapse
Affiliation(s)
- Dario Cambié
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Cecilia Bottecchia
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Natan J W Straathof
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands.,Department of Organic Chemistry, Ghent University , Krijgslaan 281 (S4), 9000 Ghent, Belgium
| |
Collapse
|
44
|
Menumerov E, Gilroy KD, Hajfathalian M, Murphy CJ, McKenzie ER, Hughes RA, Neretina S. Plastically deformed Cu-based alloys as high-performance catalysts for the reduction of 4-nitrophenol. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00734a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plastically deformed mesoscopic structures exposed to an etching procedure are demonstrated as highly catalytic in the reduction of 4-nitrophenol.
Collapse
|
45
|
Osako T, Yamada YMA, Uozumi Y. Application of Heterogeneous Polymer-Supported Catalysts to Continuous Flow Systems. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takao Osako
- Institute for Molecular Science (IMS) and SOKENDAI
| | | | - Yasuhiro Uozumi
- Institute for Molecular Science (IMS) and SOKENDAI
- RIKEN Center for Sustainable Resource Science
| |
Collapse
|