1
|
Ge W, Li Z, Yang Y, Liu X, Zhu Z, Bai L, Qin Z, Xu X, Li J, Li S. Synthesis and antibacterial activity of FST and its effects on inflammatory response and intestinal barrier function in mice infected with Escherichia coli O78. Int Immunopharmacol 2024; 127:111386. [PMID: 38109839 DOI: 10.1016/j.intimp.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Pathogenic Escherichia coli (E. coli) can cause intestinal diseases in humans and livestock, damage the intestinal barrier, increase systemic inflammation, and seriously threaten human health and the development of animal husbandry. In this study, we designed and synthesized a novel conjugate florfenicol sulfathiazole (FST) based on drug combination principles, and investigated its antibacterial activity in vitro and its protective effect on inflammatory response and intestinal barrier function in E. coli O78-infected mice in vivo. The results showed that FST had superior antibacterial properties and minimal cytotoxicity compared with its prodrugs as florfenicol and sulfathiazole. FST protected mice from lethal E. coli infection, reduced clinical signs of inflammation, reduced weight loss, alleviated intestinal structural damage. FST decreased the expression of inflammatory cytokines IL-1β, IL-6, TNF-α, and increased the expression of claudin-1, Occludin, and ZO-1 in the jejunum, improved the intestinal barrier function, and promoted the absorption of nutrients. FST also inhibited the expression of TLR4, MyD88, p-p65, and p-p38 in the jejunum. The study may lay the foundation for the development of FST as new drugs for intestinal inflammation and injury in enteric pathogen infection.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhun Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhaohan Zhu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Lixia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiao Xu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| |
Collapse
|
2
|
Li Z, Yang YJ, Qin Z, Li SH, Bai LX, Li JY, Liu XW. Florfenicol-Polyarginine Conjugates Exhibit Promising Antibacterial Activity Against Resistant Strains. Front Chem 2022; 10:921091. [PMID: 35844651 PMCID: PMC9284121 DOI: 10.3389/fchem.2022.921091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Florfenicol was widely used as antibiotic in the livestock and poultry breeding industry, resulting in a serious problem of drug resistance. In order to solve the resistance of florfenicol, this study designed and synthesized a new series of florfenicol-polyarginine conjugates and tested for antimicrobial activities. Drug-sensitive bacteria, gram-negative bacteria Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus), were sensitive to several of the compounds tested. These conjugates also showed excellent activity against drug-resistant strains such as methicillin-resistant S. aureus (MRSA) and florfenicol resistant Escherichia coli strains (2017XJ30, 2019XJ20), one of which as E6 had a minimum inhibitory concentration of 12.5 μmol/L. These conjugates did not allow bacteria to develop resistance and also decreased bacterial growth by membrane depolarization and disruption. Additionally, florfenicol succinate (C1) showed certain activity after coupling with arginine. This suggested that conjugating arginine to florfenicol succinate effectively modulated the properties of prodrugs. These new conjugates may provide useful insights for expanding the pool of antibiotics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-Wang Liu
- *Correspondence: Jian-Yong Li, ; Xi-Wang Liu,
| |
Collapse
|
3
|
Schulze JS, Brand RD, Hering JG, Riegger LM, Schreiner PR, Smarsly BM. DMAP immobilized on porous silica particles and monoliths for the esterification of phenylethanol in continuous flow. ChemCatChem 2022. [DOI: 10.1002/cctc.202101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia S. Schulze
- Justus Liebig Universitat Giessen Institute of Physical Chemistry 35392 Giessen GERMANY
| | - Raoul D. Brand
- Justus Liebig Universitat Giessen Institute of Physical Chemistry 35392 Giessen GERMANY
| | | | - Luise M. Riegger
- Justus Liebig Universitat Giessen Institute of Physical Chemistry 35392 Giessen GERMANY
| | - Peter R. Schreiner
- Justus Liebig Universitat Giessen Institute of Organic Chemistry 35392 Giessen GERMANY
| | - Bernd M. Smarsly
- Physikalisch-Chemisches Institut Justus-Liebig-Universität Gießen Heinrich Buff Ring 17 35392 Gießen GERMANY
| |
Collapse
|
4
|
Torabinia M, Asgari P, Dakarapu US, Jeon J, Moon H. On-chip organic synthesis enabled using an engine-and-cargo system in an electrowetting-on-dielectric digital microfluidic device. LAB ON A CHIP 2019; 19:3054-3064. [PMID: 31373597 DOI: 10.1039/c9lc00428a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This paper presents a microfluidic chemical reaction using an electrowetting-on-dielectric (EWOD) digital microfluidic device. Despite a number of chemical/biological applications using EWOD digital microfluidic devices, their applications to organic reactions have been seriously limited because most of the common solvents used in synthetic organic chemistry are not compatible with EWOD devices. To address this unsolved issue, we first introduce a novel technique using an "engine-and-cargo" system that enables the use of non-movable fluids (e.g., organic solvents) on an EWOD device. With esterification as the model reaction, on-chip chemical reactions were successfully demonstrated. Conversion data obtained from on-chip reactions were used to characterize and optimize the reaction with regard to reaction kinetics, solvent screening, and catalyst loading. As the first step toward on-chip combinatorial synthesis, parallel esterification of three different alcohols was demonstrated. Results from this study clearly show that an EWOD digital microfluidic platform is a promising candidate for microscale chemical reactions.
Collapse
Affiliation(s)
- Matin Torabinia
- Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
| | | | | | | | | |
Collapse
|
6
|
Continuous Flow Alcoholysis of Dialkyl H-Phosphonates with Aliphatic Alcohols. Molecules 2018; 23:molecules23071618. [PMID: 29970851 PMCID: PMC6100214 DOI: 10.3390/molecules23071618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 01/10/2023] Open
Abstract
The continuous flow alcoholysis of dialkyl H-phosphonates by aliphatic alcohols in the absence of a catalyst was elaborated using a microwave (MW) reactor equipped with a flow cell. By the precise control of the reaction conditions, the synthesis could be fine-tuned towards dialkyl H-phosphonates with two different and with two identical alkyl groups. In contrast to the "traditional" batch alcoholysis, flow approaches required shorter reaction times, and the products became available at a larger scale.
Collapse
|
7
|
Faisal S, Zang Q, Maity PK, Brandhofer A, Kearney PC, Reiser O, Grass RN, Stoianova D, Hanson PR. Development and Application of a Recyclable High-Load Magnetic Co/C Hybrid ROMP-Derived Benzenesulfonyl Chloride Reagent and Utility of Corresponding Analogues. Org Lett 2017; 19:2274-2277. [PMID: 28437113 DOI: 10.1021/acs.orglett.7b00792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development and application of high-load, recyclable magnetic Co/C hybrid ROMP-derived benzenesulfonyl chloride and analogues is reported. The regeneration and utility of these reagents in the methylation/alkylation of various carboxylic acids is demonstrated via efficient retrieval of the magnetic reagent with a neodymium magnet. Additional reactions employing the analogue sulfonic acid and in situ generated magnetic benzenesulfonyl azide are also reported.
Collapse
Affiliation(s)
- Saqib Faisal
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States.,The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD) , 2034 Becker Drive, Delbert M. Shankel Structural Biology Center, Lawrence, Kansas 66047, United States
| | - Qin Zang
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States.,The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD) , 2034 Becker Drive, Delbert M. Shankel Structural Biology Center, Lawrence, Kansas 66047, United States
| | - Pradip K Maity
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States.,The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD) , 2034 Becker Drive, Delbert M. Shankel Structural Biology Center, Lawrence, Kansas 66047, United States
| | - Agnes Brandhofer
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States.,The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD) , 2034 Becker Drive, Delbert M. Shankel Structural Biology Center, Lawrence, Kansas 66047, United States.,Institute for Organic Chemistry, University of Regensburg , Universitatsstrasse 31, 93053 Regensburg, Germany
| | | | - Oliver Reiser
- Institute for Organic Chemistry, University of Regensburg , Universitatsstrasse 31, 93053 Regensburg, Germany
| | - Robert N Grass
- Institute for Chemical and Bioengineering , Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Diana Stoianova
- Materia, Inc., 60 North San Gabriel Boulevard, Pasadena, California 91107, United States
| | - Paul R Hanson
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States.,The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD) , 2034 Becker Drive, Delbert M. Shankel Structural Biology Center, Lawrence, Kansas 66047, United States
| |
Collapse
|
8
|
Panahi F, Dangolani SK, Khalafi-Nezhad A. Synthesis of a Novel Magnetic Reusable Organocatalyst Based on 4-Dialkylaminopyridines for Acyl Transformations. ChemistrySelect 2016. [DOI: 10.1002/slct.201600824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Farhad Panahi
- Department of Chemistry; College of Sciences; Shiraz 71454, Iran Iran
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | | | | |
Collapse
|