• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4615863)   Today's Articles (133)   Subscriber (49393)
For: Clark S, Latz A, Horstmann B. Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries. ChemSusChem 2017;10:4735-4747. [PMID: 28898553 PMCID: PMC5765460 DOI: 10.1002/cssc.201701468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 05/07/2023]
Number Cited by Other Article(s)
1
Wang F, Qiu K, Zhang W, Zhu K, Chen J, Liao M, Dong X, Wang F. Mesoporous Carbon for High-Performance Near-Neutral Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024;20:e2304558. [PMID: 37649197 DOI: 10.1002/smll.202304558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Indexed: 09/01/2023]
2
Biomass-Derived Carbon Materials for the Electrode of Metal-Air Batteries. Int J Mol Sci 2023;24:ijms24043713. [PMID: 36835125 PMCID: PMC9963816 DOI: 10.3390/ijms24043713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]  Open
3
Javed N, Noor T, Iqbal N, Naqvi SR. A review on development of metal-organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal-air batteries. RSC Adv 2023;13:1137-1161. [PMID: 36686941 PMCID: PMC9841892 DOI: 10.1039/d2ra06741b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]  Open
4
Development of electrolytes for rechargeable zinc-air batteries: current progress, challenges, and future outlooks. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]  Open
5
Liu B, Wu T, Ma F, Zhong C, Hu W. Long-Life and Highly Utilized Zinc Anode for Aqueous Batteries Enabled by Electrolyte Additives with Synergistic Effects. ACS APPLIED MATERIALS & INTERFACES 2022;14:18431-18438. [PMID: 35413179 DOI: 10.1021/acsami.2c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
6
Lai CY, Lu YT, Jao WY, Chen HY, Hu CC. Near-neutral flexible zinc-air batteries with high power densities and long cycle life using chloride-based gel polymer electrolytes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
7
Liu X, Fan X, Liu B, Ding J, Deng Y, Han X, Zhong C, Hu W. Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021;33:e2006461. [PMID: 34050684 DOI: 10.1002/adma.202006461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
8
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021;408:127240. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 05/24/2023]
9
Li G, Monroe CW. Multiscale Lithium-Battery Modeling from Materials to Cells. Annu Rev Chem Biomol Eng 2020;11:277-310. [PMID: 32212821 DOI: 10.1146/annurev-chembioeng-012120-083016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
10
Derivation of a local volume-averaged model and a stable numerical algorithm for multi-dimensional simulations of conversion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Durmus YE, Montiel Guerrero SS, Tempel H, Hausen F, Kungl H, Eichel RA. Influence of Al Alloying on the Electrochemical Behavior of Zn Electrodes for Zn-Air Batteries With Neutral Sodium Chloride Electrolyte. Front Chem 2019;7:800. [PMID: 31824927 PMCID: PMC6880620 DOI: 10.3389/fchem.2019.00800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]  Open
12
Iruin E, Mainar AR, Enterría M, Ortiz-Vitoriano N, Blázquez JA, Colmenares LC, Rojo T, Clark S, Horstmann B. Designing a manganese oxide bifunctional air electrode for aqueous chloride-based electrolytes in secondary zinc-air batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
13
Ivšić T, Bi DW, Magrez A. New refinement of the crystal structure of Zn(NH3)2Cl2 at 100 K. Acta Crystallogr E Crystallogr Commun 2019;75:1386-1388. [PMID: 31523472 PMCID: PMC6727043 DOI: 10.1107/s2056989019011757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 07/20/2024]
14
Mondal SK, Beriya MK, Saha P. Separation and Recovery of Nickel and Zinc from Synthetic Wastewater Using Supported Liquid Membranes with in Situ Electrodeposition. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Latz A, Danner T, Horstmann B, Jahnke T. Microstructure‐ and Theory‐Based Modeling and Simulation of Batteries and Fuel Cells. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
16
Improved Discharge Capacity of Zinc Particles by Applying Bismuth-Doped Silica Coating for Zinc-Based Batteries. BATTERIES-BASEL 2019. [DOI: 10.3390/batteries5010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
17
Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019;48:72-133. [DOI: 10.1039/c8cs00324f] [Citation(s) in RCA: 978] [Impact Index Per Article: 195.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
18
An L, Zhang Z, Feng J, Lv F, Li Y, Wang R, Lu M, Gupta RB, Xi P, Zhang S. Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc–Air Battery with Neutral Aqueous Electrolyte. J Am Chem Soc 2018;140:17624-17631. [DOI: 10.1021/jacs.8b09805] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
19
Chen X, Zhou Z, Karahan HE, Shao Q, Wei L, Chen Y. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018;14:e1801929. [PMID: 30160051 DOI: 10.1002/smll.201801929] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/23/2018] [Indexed: 05/14/2023]
20
Discharge Performance of Zinc-Air Flow Batteries Under the Effects of Sodium Dodecyl Sulfate and Pluronic F-127. Sci Rep 2018;8:14909. [PMID: 30297883 PMCID: PMC6175836 DOI: 10.1038/s41598-018-32806-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]  Open
21
Mechanical Coating of Zinc Particles with Bi2O3-Li2O-ZnO Glasses as Anode Material for Rechargeable Zinc-Based Batteries. BATTERIES-BASEL 2018. [DOI: 10.3390/batteries4010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
22
A Review of Model-Based Design Tools for Metal-Air Batteries. BATTERIES-BASEL 2018. [DOI: 10.3390/batteries4010005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
23
Hoffmann V, Pulletikurthi G, Carstens T, Lahiri A, Borodin A, Schammer M, Horstmann B, Latz A, Endres F. Influence of a silver salt on the nanostructure of a Au(111)/ionic liquid interface: an atomic force microscopy study and theoretical concepts. Phys Chem Chem Phys 2018;20:4760-4771. [DOI: 10.1039/c7cp08243f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA