1
|
Chen Y, Xu S, Fang Wen C, Zhang H, Zhang T, Lv F, Yue Y, Bian Z. Unravelling the Role of Free Radicals in Photocatalysis. Chemistry 2024; 30:e202400001. [PMID: 38501217 DOI: 10.1002/chem.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
Free radicals are increasingly recognized as active intermediate reactive species that can participate in various redox processes, significantly influencing the mechanistic pathways of reactions. Numerous researchers have investigated the generation of one or more distinct photogenerated radicals, proposing various hypotheses to explain the reaction mechanisms. Notably, recent research has demonstrated the emergence of photogenerated radicals in innovative processes, including organic chemical reactions and the photocatalytic dissolution of precious metals. To harness the potential of these free radicals more effectively, it is imperative to consolidate and analyze the processes and action modes of these photogenerated radicals. This conceptual paper delves into the latest advancements in understanding the mechanics of photogenerated radicals.
Collapse
Affiliation(s)
- Yao Chen
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Shuyang Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Ting Zhang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Fujian Lv
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655400, China
| | - Yinghong Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
2
|
de Wild T, Wurm J, Becker P, Günther D, Nauser T, Schmidt TJ, Gubler L, Nemeth T. A Nature-Inspired Antioxidant Strategy based on Porphyrin for Aromatic Hydrocarbon Containing Fuel Cell Membranes. CHEMSUSCHEM 2023; 16:e202300775. [PMID: 37551734 DOI: 10.1002/cssc.202300775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The use of hydrocarbon-based proton conducting membranes in fuel cells is currently hampered by the insufficient durability of the material in the device. Membrane aging is triggered by the presence of reactive intermediates, such as HO⋅, which attack the polymer and eventually lead to chain breakdown and membrane failure. An adequate antioxidant strategy tailored towards hydrocarbon-based ionomers is therefore imperative to improve membrane lifetime. In this work, we perform studies on reaction kinetics using pulse radiolysis and γ-radiolysis as well as fuel cell experiments to demonstrate the feasibility of increasing the stability of hydrocarbon-based membranes against oxidative attack by implementing a Nature-inspired antioxidant strategy. We found that metalated-porphyrins are suitable for damage transfer and can be used in the fuel cell membrane to reduce membrane aging with a low impact on fuel cell performance.
Collapse
Affiliation(s)
- Tym de Wild
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Jan Wurm
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Pascal Becker
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Detlef Günther
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas Nauser
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
- Laboratory of Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Lorenz Gubler
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Tamas Nemeth
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
3
|
Balduf T, Blakemore JD, Caricato M. Computational Insights into the Influence of Ligands on Hydrogen Generation with [Cp*Rh] Hydrides. J Phys Chem A 2023. [PMID: 37436832 DOI: 10.1021/acs.jpca.3c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This work reports a computational investigation of the effect of ancillary ligands on the activity of an Rh catalyst for hydrogen evolution based on the [Cp*Rh] motif (Cp* = η5-pentamethylcyclopentadienyl). Specifically, we investigate why a bipyridyl (bpy) ligand leads to H2 generation but diphenylphosphino-based (dpp) ligands do not. We compare the full ligands to simplified models and systematically vary structural features to ascertain their effect on the reaction energy of each catalytic step. The calculations based on density functional theory show that the main effect on reactivity is the choice of linker atom, followed by its coordination. In particular, P stabilizes the intermediate Rh-hydride species by donating electron density to the Rh, thus inhibiting the reaction toward H2 generation. Conversely, N, a more electron-withdrawing center, favors H2 generation at the price of destabilizing the hydride intermediate, which cannot be isolated experimentally and makes determining the mechanism of this reaction more difficult. We also find that the steric effects of bulky substituents on the main ligand scaffold can lead to large effects on the reactivity, which may be challenging to fine-tune. On the other hand, structural features like the bite angle of the bidentate ligand have a much smaller impact on reactivity. Therefore, we propose that the choice of linker atom is key for the catalytic activity of this species, which can be further fine-tuned by a proper choice of electron-directing groups on the ligand scaffold.
Collapse
Affiliation(s)
- Ty Balduf
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Henke W, Peng Y, Meier A, Fujita E, Grills D, Polyansky D, Blakemore J. Mechanistic roles of metal- and ligand-protonated species in hydrogen evolution with [Cp*Rh] complexes. Proc Natl Acad Sci U S A 2023; 120:e2217189120. [PMID: 37186841 PMCID: PMC10214172 DOI: 10.1073/pnas.2217189120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/17/2023] [Indexed: 05/17/2023] Open
Abstract
Protonation reactions involving organometallic complexes are ubiquitous in redox chemistry and often result in the generation of reactive metal hydrides. However, some organometallic species supported by η5-pentamethylcyclopentadienyl (Cp*) ligands have recently been shown to undergo ligand-centered protonation by direct proton transfer from acids or tautomerization of metal hydrides, resulting in the generation of complexes bearing the uncommon η4-pentamethylcyclopentadiene (Cp*H) ligand. Here, time-resolved pulse radiolysis (PR) and stopped-flow spectroscopic studies have been applied to examine the kinetics and atomistic details involved in the elementary electron- and proton-transfer steps leading to complexes ligated by Cp*H, using Cp*Rh(bpy) as a molecular model (where bpy is 2,2'-bipyridyl). Stopped-flow measurements coupled with infrared and UV-visible detection reveal that the sole product of initial protonation of Cp*Rh(bpy) is [Cp*Rh(H)(bpy)]+, an elusive hydride complex that has been spectroscopically and kinetically characterized here. Tautomerization of the hydride leads to the clean formation of [(Cp*H)Rh(bpy)]+. Variable-temperature and isotopic labeling experiments further confirm this assignment, providing experimental activation parameters and mechanistic insight into metal-mediated hydride-to-proton tautomerism. Spectroscopic monitoring of the second proton transfer event reveals that both the hydride and related Cp*H complex can be involved in further reactivity, showing that [(Cp*H)Rh] is not necessarily an off-cycle intermediate, but, instead, depending on the strength of the acid used to drive catalysis, an active participant in hydrogen evolution. Identification of the mechanistic roles of the protonated intermediates in the catalysis studied here could inform design of optimized catalytic systems supported by noninnocent cyclopentadienyl-type ligands.
Collapse
Affiliation(s)
- Wade C. Henke
- Department of Chemistry, University of Kansas, Lawrence, KS66045
| | - Yun Peng
- Department of Chemistry, University of Kansas, Lawrence, KS66045
| | - Alex A. Meier
- Department of Chemistry, University of Kansas, Lawrence, KS66045
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, NY11973-5000
| | - David C. Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, NY11973-5000
| | | | | |
Collapse
|
5
|
Shin NY, Tsui E, Reinhold A, Scholes GD, Bird MJ, Knowles RR. Radicals as Exceptional Electron-Withdrawing Groups: Nucleophilic Aromatic Substitution of Halophenols Via Homolysis-Enabled Electronic Activation. J Am Chem Soc 2022; 144:21783-21790. [PMID: 36395367 PMCID: PMC10512454 DOI: 10.1021/jacs.2c10296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While heteroatom-centered radicals are understood to be highly electrophilic, their ability to serve as transient electron-withdrawing groups and facilitate polar reactions at distal sites has not been extensively developed. Here, we report a new strategy for the electronic activation of halophenols, wherein generation of a phenoxyl radical via formal homolysis of the aryl O-H bond enables direct nucleophilic aromatic substitution of the halide with carboxylate nucleophiles under mild conditions. Pulse radiolysis and transient absorption studies reveal that the neutral oxygen radical (O•) is indeed an extraordinarily strong electron-withdrawing group [σp-(O•) = 2.79 vs σp-(NO2) = 1.27]. Additional mechanistic and computational studies indicate that the key phenoxyl intermediate serves as an open-shell electron-withdrawing group in these reactions, lowering the barrier for nucleophilic substitution by more than 20 kcal/mol relative to the closed-shell phenol form of the substrate. By using radicals as transient activating groups, this homolysis-enabled electronic activation strategy provides a powerful platform to expand the scope of nucleophile-electrophile couplings and enable previously challenging transformations.
Collapse
Affiliation(s)
- Nick Y. Shin
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Elaine Tsui
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Adam Reinhold
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | | | - Matthew J. Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973 (USA)
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| |
Collapse
|
6
|
Grills DC, Layne BH, Wishart JF. Coupling Pulse Radiolysis with Nanosecond Time-Resolved Step-Scan Fourier Transform Infrared Spectroscopy: Broadband Mid-Infrared Detection of Radiolytically Generated Transients. APPLIED SPECTROSCOPY 2022; 76:1142-1153. [PMID: 35414202 DOI: 10.1177/00037028221097429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We describe the first implementation of broadband, nanosecond time-resolved step-scan Fourier transform infrared (S2-FT-IR) spectroscopy at a pulse radiolysis facility. This new technique allows the rapid acquisition of nano- to microsecond time-resolved infrared (TRIR) spectra of transient species generated by pulse radiolysis of liquid samples at a pulsed electron accelerator. Wide regions of the mid-infrared can be probed in a single experiment, which often takes < 20-30 min to complete. It is therefore a powerful method for rapidly locating the IR absorptions of short-lived, radiation-induced species in solution, and for directly monitoring their subsequent reactions. Time-resolved step-scan FT-IR detection for pulse radiolysis thus complements our existing narrowband quantum cascade laser-based pulse radiolysis-TRIR detection system, which is more suitable for acquiring single-shot kinetics and narrowband TRIR spectra on small-volume samples and in strongly absorbing solvents, such as water. We have demonstrated the application of time-resolved step-scan FT-IR spectroscopy to pulse radiolysis by probing the metal carbonyl and organic carbonyl vibrations of the one-electron-reduced forms of two Re-based CO2 reduction catalysts in acetonitrile solution. Transient IR absorption bands with amplitudes on the order of 1 × 10-3 are easily detected on the sub-microsecond timescale using electron pulses as short as 250 ns.
Collapse
Affiliation(s)
- David C Grills
- Chemistry Division, 8099Brookhaven National Laboratory, Upton, NY, USA
| | - Bobby H Layne
- Chemistry Division, 8099Brookhaven National Laboratory, Upton, NY, USA
| | - James F Wishart
- Chemistry Division, 8099Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
7
|
Millet A, Cesana PT, Sedillo K, Bird MJ, Schlau-Cohen GS, Doyle AG, MacMillan DWC, Scholes GD. Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Acc Chem Res 2022; 55:1423-1434. [PMID: 35471814 DOI: 10.1021/acs.accounts.2c00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFor more than a decade, photoredox catalysis has been demonstrating that when photoactive catalysts are irradiated with visible light, reactions occur under milder, cheaper, and environmentally friendlier conditions. Furthermore, this methodology allows for the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. The photoredox approach, however, has been primarily used for pharmaceutical applications, where its implementation has been highly effective, but typically with a more rudimentary understanding of the mechanisms involved in these transformations. From a global perspective, the manufacture of everyday chemicals by the chemical industry as a whole currently accounts for 10% of total global energy consumption and generates 7% of the world's greenhouse gases annually. In this context, the Bio-Inspired Light-Escalated Chemistry (BioLEC) Energy Frontier Research Center (EFRC) was founded to supercharge the photoredox approach for applications in chemical manufacturing aimed at reducing its energy consumption and emissions burden, by using bioinspired schemes to harvest multiple electrons to drive endothermically uphill chemical reactions. The Center comprises a diverse group of researchers with expertise that includes synthetic chemistry, biophysics, physical chemistry, and engineering. The team works together to gain a deeper understanding of the mechanistic details of photoredox reactions while amplifying the applications of these light-driven methodologies.In this Account, we review some of the major advances in understanding, approach, and applicability made possible by this collaborative Center. Combining sophisticated spectroscopic tools and photophysics tactics with enhanced photoredox reactions has led to the development of novel techniques and reactivities that greatly expand the field and its capabilities. The Account is intended to highlight how the interplay between disciplines can have a major impact and facilitate the advance of the field. For example, techniques such as time-resolved dielectric loss (TRDL) and pulse radiolysis are providing mechanistic insights not previously available. Hypothesis-driven photocatalyst design thus led to broadening of the scope of several existing transformations. Moreover, bioconjugation approaches and the implementation of triplet-triplet annihilation mechanisms created new avenues for the exploration of reactivities. Lastly, our multidisciplinary approach to tackling real-world problems has inspired the development of efficient methods for the depolymerization of lignin and artificial polymers.
Collapse
Affiliation(s)
- Agustin Millet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul T. Cesana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kassandra Sedillo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew J. Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Abigail G. Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - David W. C. MacMillan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Polyansky DE, Grills DC, Ertem MZ, Ngo KT, Fujita E. Role of Bimetallic Interactions in the Enhancement of Catalytic CO2 Reduction by a Macrocyclic Cobalt Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitry E. Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David C. Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z. Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Ken T. Ngo
- Department of Chemistry, University of Massachusetts, Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
9
|
Till NA, Oh S, MacMillan DWC, Bird MJ. The Application of Pulse Radiolysis to the Study of Ni(I) Intermediates in Ni-Catalyzed Cross-Coupling Reactions. J Am Chem Soc 2021; 143:9332-9337. [PMID: 34128676 DOI: 10.1021/jacs.1c04652] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we report the use of pulse radiolysis and spectroelectrochemistry to generate low-valent nickel intermediates relevant to synthetically important Ni-catalyzed cross-coupling reactions and interrogate their reactivities toward comproportionation and oxidative addition processes. Pulse radiolysis provided a direct means to generate singly reduced [(dtbbpy)NiBr], enabling the identification of a rapid Ni(0)/Ni(II) comproportionation process taking place under synthetically relevant electrolysis conditions. This approach also permitted the direct measurement of Ni(I) oxidative addition rates with electronically differentiated aryl iodide electrophiles (kOA = 1.3 × 104-2.4 × 105 M-1 s-1), an elementary organometallic step often proposed in nickel-catalyzed cross-coupling reactions. Together, these results hold implications for a number of Ni-catalyzed cross-coupling processes.
Collapse
Affiliation(s)
- Nicholas A Till
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Seokjoon Oh
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
10
|
DiMarco BN, Polyansky DE, Grills DC, Wang P, Kuwahara Y, Zhao X, Fujita E. Structural and Electronic Influences on Rates of Tertpyridine-Amine Co III -H Formation During Catalytic H 2 Evolution in an Aqueous Environment. Chemphyschem 2021; 22:1478-1487. [PMID: 33990996 DOI: 10.1002/cphc.202100295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Indexed: 01/04/2023]
Abstract
In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII -Cl]+ species results in the formation of [CoII (κ4 -L)(OH2 )]2+ . Further reduction produces [CoI (κ4 -L)(OH2 )]+ , which undergoes a rate-limiting structural rearrangement to [CoI (κ5 -L)]+ before being protonated to form [CoIII -H]2+ . The rate of [CoIII -H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII -H]2+ estimated from PR experiments, we found that while the protonation of [CoIII -H]2+ is unfavorable, [CoII -H]+ reacts with protons to produce H2 . The catalytic activity for H2 evolution tracks the hydricity of the [CoII -H]+ intermediate.
Collapse
Affiliation(s)
- Brian N DiMarco
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - Ping Wang
- Department of Chemistry, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| |
Collapse
|
11
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang P, Liang G, Webster CE, Zhao X. Structure‐Functional Analysis of Hydrogen Production Catalyzed by Molecular Cobalt Complexes with Pentadentate Ligands in Aqueous Solutions. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Wang
- Department of Chemistry The University of Memphis 38152 Memphis Tennessee USA
| | - Guangchao Liang
- Department of Chemistry University of Michigan 48109 Ann Arbor Michigan USA
- Department of Chemistry Mississippi State University 39762 Starkville Mississippi USA
| | - Charles Edwin Webster
- Department of Chemistry Mississippi State University 39762 Starkville Mississippi USA
| | - Xuan Zhao
- Department of Chemistry The University of Memphis 38152 Memphis Tennessee USA
| |
Collapse
|
13
|
Wang P, Liang G, Smith N, Hill K, Donnadieu B, Webster CE, Zhao X. Enhanced Hydrogen Evolution in Neutral Water Catalyzed by a Cobalt Complex with a Softer Polypyridyl Ligand. Angew Chem Int Ed Engl 2020; 59:12694-12697. [PMID: 32307871 DOI: 10.1002/anie.202002640] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Indexed: 11/08/2022]
Abstract
To explore the structure-function relationships of cobalt complexes in the catalytic hydrogen evolution reaction (HER), we studied the substitution of a tertiary amine with a softer pyridine group and the inclusion of a conjugated bpy unit in a Co complex with a new pentadentate ligand, 6-[6-(1,1-di-pyridin-2-yl-ethyl)-pyridin-2-ylmethyl]-[2,2']bipyridinyl (Py3Me-Bpy). These modifications resulted in significantly improved stability and activity in both electro- and photocatalytic HER in neutral water. [Co(Py3Me-Bpy)(OH2 )](PF6 )2 catalyzes the electrolytic HER at -1.3 V (vs. SHE) for 20 hours with a turnover number (TON) of 266 300, and photolytic HER for two days with a TON of 15 000 in pH 7 aqueous solutions. The softer ligand scaffold possibly provides increased stability towards the intermediate CoI species. DFT calculations demonstrate that HER occurs through a general electron transfer/proton transfer/electron transfer/proton transfer pathway, with H2 released from the protonation of CoII -H species.
Collapse
Affiliation(s)
- Ping Wang
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Guangchao Liang
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Noah Smith
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Kyra Hill
- Division of Science and Math, Rust College, Holly Springs, MS, 38635, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Xuan Zhao
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|
14
|
Wang P, Liang G, Smith N, Hill K, Donnadieu B, Webster CE, Zhao X. Enhanced Hydrogen Evolution in Neutral Water Catalyzed by a Cobalt Complex with a Softer Polypyridyl Ligand. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Wang
- Department of Chemistry The University of Memphis Memphis TN 38152 USA
| | - Guangchao Liang
- Department of Chemistry Mississippi State University Mississippi State MS 39762 USA
| | - Noah Smith
- Department of Chemistry & Physics Arkansas State University Jonesboro AR 72401 USA
| | - Kyra Hill
- Division of Science and Math Rust College Holly Springs MS 38635 USA
| | - Bruno Donnadieu
- Department of Chemistry Mississippi State University Mississippi State MS 39762 USA
| | | | - Xuan Zhao
- Department of Chemistry The University of Memphis Memphis TN 38152 USA
| |
Collapse
|
15
|
Sconyers DJ, Blakemore JD. Electrodeposition behavior of homoleptic transition metal acetonitrile complexes interrogated with piezoelectric gravimetry. Analyst 2020; 145:466-477. [PMID: 31750451 DOI: 10.1039/c9an01952a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homoleptic acetonitrile complexes of first-row transition metal ions are a common product of the detrimental speciation of coordination complexes and organometallic compounds. However, the electrochemical properties of such species are mostly unknown, introducing ambiguities into interpretation of electroanalytical data associated with studies of molecular electrocatalysis. Here, we have cataloged the cyclic voltammetric properties of the solvento complexes of Mn(ii), Fe(ii), Co(ii), Ni(ii), Cu(i), and Zn(ii) in acetonitrile electrolyte, providing information on the cathodic electrodeposition and anodic stripping processes occuring with each ion. The electrochemical quartz crystal microbalance (EQCM) has been used to quantify these processes, as well as the rates of the in situ corrosion of electrodeposited materials by the strong organic acid dimethylforamidinium, [DMFH]+. Ex situ X-ray photoelectron spectroscopic results confirm the interpretations of the voltammetric and gravimetric data, and confirm the periodic relationship between the metals. Taken together, the results described here provide an electrochemical roadmap useful in distinguishing currents arising from homogeneous electrocatalysis from currents associated with the redox cycling of secondary heterogeneous materials.
Collapse
Affiliation(s)
- David J Sconyers
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
16
|
Sconyers DJ, Blakemore JD. Distinguishing deposition, corrosion, and stripping of transient heterogeneous materials during molecular electrocatalysis. Dalton Trans 2019; 48:6372-6382. [PMID: 30942228 DOI: 10.1039/c9dt00584f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the behavior of molecular hydrogen-evolving electrocatalysts is often challenging, because secondary heterogeneous materials can form during reductive electrode polarization and contribute to catalysis. Here, we use an electrochemical quartz crystal microbalance to interrogate secondary heterogeneous materials formed in situ during hydrogen generation with the proton- and difluoroboryl-bridged dimethylglyoxime cobalt catalysts in acetonitrile electrolyte. Detrimental protonation reactions of the molecular precatalysts lead to formation of the transient heterogeneous materials, and the structure of the molecular cobaloxime precursors affects the potential dependence and kinetics of deposition and loss of heterogeneous material from the electrode surface. The strength of the acid in the electrolyte (needed as the proton source for H2 generation) also contributes to the stability and corrosion rate of the heterogeneous materials, as revealed in multistep polarization studies. Overall, these results support involvement of an interplay of electrodeposition, proton-driven (chemical) corrosion, and anodic (electrochemical) stripping in influencing the catalytic activity and the behavior of transient heterogeneous materials that may be generated during catalysis.
Collapse
Affiliation(s)
- David J Sconyers
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
17
|
Natali M, Nastasi F, Puntoriero F, Sartorel A. Mechanistic Insights into Light‐Activated Catalysis for Water Oxidation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirco Natali
- Department of Chemical and Pharmaceutical Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Francesco Nastasi
- Department of Chemical Biological University of Messina Via Sperone 31 98166 Messina Italy
| | - Fausto Puntoriero
- Department of Chemical Biological University of Messina Via Sperone 31 98166 Messina Italy
| | - Andrea Sartorel
- Department of Chemical Sciences Biological University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
18
|
Moore WNG, Henke WC, Lionetti D, Day VW, Blakemore JD. Single-Electron Redox Chemistry on the [Cp*Rh] Platform Enabled by a Nitrated Bipyridyl Ligand. Molecules 2018; 23:E2857. [PMID: 30400193 PMCID: PMC6278249 DOI: 10.3390/molecules23112857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022] Open
Abstract
[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) are attracting renewed interest in coordination chemistry and catalysis, but these useful compounds often undergo net two-electron redox cycling that precludes observation of individual one-electron reduction events. Here, we show that a [Cp*Rh] complex bearing the 4,4'-dinitro-2,2'-bipyridyl ligand (dnbpy) (3) can access a distinctive manifold of five oxidation states in organic electrolytes, contrasting with prior work that found no accessible reductions in aqueous electrolyte. These states are readily generated from a newly isolated and fully characterized rhodium(III) precursor complex 3, formulated as [Cp*Rh(dnbpy)Cl]PF₆. Single-crystal X-ray diffraction (XRD) data, previously unavailable for the dnbpy ligand bound to the [Cp*Rh] platform, confirm the presence of both [η⁵-Cp*] and [κ²-dnbpy]. Four individual one-electron reductions of 3 are observed, contrasting sharply with the single two-electron reductions of other [Cp*Rh] complexes. Chemical preparation and the study of the singly reduced species with electronic absorption and electron paramagnetic resonance spectroscopies indicate that the first reduction is predominantly centered on the dnbpy ligand. Comparative cyclic voltammetry studies with [NBu₄][PF₆] and [NBu₄][Cl] as supporting electrolytes indicate that the chloride ligand can be lost from 3 by ligand exchange upon reduction. Spectroelectrochemical studies with ultraviolet (UV)-visible detection reveal isosbestic behavior, confirming the clean interconversion of the reduced forms of 3 inferred from the voltammetry with [NBu₄][PF₆] as supporting electrolyte. Electrochemical reduction in the presence of triethylammonium results in an irreversible response, but does not give rise to catalytic H₂ evolution, contrasting with the reactivity patterns observed in [Cp*Rh] complexes bearing bipyridyl ligands with less electron-withdrawing substituents.
Collapse
Affiliation(s)
- William N G Moore
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - Wade C Henke
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - Davide Lionetti
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| |
Collapse
|
19
|
Grills DC, Ertem MZ, McKinnon M, Ngo KT, Rochford J. Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
McKinnon M, Ngo KT, Sobottka S, Sarkar B, Ertem MZ, Grills DC, Rochford J. Synergistic Metal–Ligand Redox Cooperativity for Electrocatalytic CO2 Reduction Promoted by a Ligand-Based Redox Couple in Mn and Re Tricarbonyl Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meaghan McKinnon
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Ken T. Ngo
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin 14195, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin 14195, Germany
| | - Mehmed Z. Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David C. Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| |
Collapse
|
21
|
Fukuzumi S, Lee YM, Ahn HS, Nam W. Mechanisms of catalytic reduction of CO 2 with heme and nonheme metal complexes. Chem Sci 2018; 9:6017-6034. [PMID: 30090295 PMCID: PMC6053956 DOI: 10.1039/c8sc02220h] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
The catalytic conversion of CO2 into valuable chemicals and fuels has attracted increasing attention, providing a promising route for mitigating the greenhouse effect of CO2 and also meeting the global energy demand. Among many homogeneous and heterogeneous catalysts for CO2 reduction, this mini-review is focused on heme and nonheme metal complexes that act as effective catalysts for the electrocatalytic and photocatalytic reduction of CO2. Because metalloporphyrinoids show strong absorption in the visible region, which is sensitive to the oxidation states of the metals and ligands, they are suited for the detection of reactive intermediates in the catalytic CO2 reduction cycle by electronic absorption spectroscopy. The first part of this review deals with the catalytic mechanism for the one-electron reduction of CO2 to oxalic acid with heme and nonheme metal complexes, with an emphasis on how the formation of highly energetic CO2˙ is avoided. Then, the catalytic mechanism of two-electron reduction of CO2 to produce CO and H2O is compared with that to produce HCOOH. The effect of metals and ligands of the heme and nonheme complexes on the CO or HCOOH product selectivity is also discussed. The catalytic mechanisms of multi-electron reduction of CO2 to methanol (six-electron reduced product) and methane (eight-electron reduced product) are also discussed for both electrocatalytic and photocatalytic systems.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- Graduate School of Science and Engineering , Meijo University , Nagoya , Aichi 468-8502 , Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- Research Institute for Basic Sciences , Ewha Womans University , Seoul 03760 , Korea
| | - Hyun S Ahn
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea .
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
22
|
Grills DC, Lymar SV. Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy. Phys Chem Chem Phys 2018; 20:10011-10017. [DOI: 10.1039/c8cp00977e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First IR detection of CO2˙− in acetonitrile, produced by radiation-induced CO2 reduction and oxidation of formate.
Collapse
|