1
|
Ren Z, Feng T, Gao T, Han B, Guo R, Ma H, Wang JJ, Zhang Y. Cu(I)-Catalyzed Highly Regioselective C-H Amidation of Quinoline N-Oxides with Dioxazolones. Org Lett 2024; 26:8532-8536. [PMID: 39347582 DOI: 10.1021/acs.orglett.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
A Cu(I)-catalyzed highly regioselective synthesis of 2-acetamidequinoline N-oxides using dioxazolones with quinoline N-oxides has been reported. The reaction possesses mild reaction conditions and excellent functional group compatibility. Furthermore, the addition of hydrochloric acid promotes the decomposition of copper complexes, which is beneficial for postprocessing.
Collapse
Affiliation(s)
- Zhiqiang Ren
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Tianhui Feng
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Tianli Gao
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Bo Han
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ruili Guo
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Haojie Ma
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ji-Jiang Wang
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Yuqi Zhang
- Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| |
Collapse
|
2
|
Mishra S, Aghi A, Kumar A. Rh(III)-Catalyzed Controlled Ortho-Amidation of Arylamides with Dioxazolones Using Weakly Coordinating Native Primary Amide as the Directing Group. J Org Chem 2024; 89:5606-5618. [PMID: 38557043 DOI: 10.1021/acs.joc.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we report a controlled introduction of an amide unit at the ortho-position of an electron-deficient arylamide system without affording any cyclized products using user-friendly dioxazolone as an amidating reagent in the presence of a Rh(III)-catalyst. This is the first report where native primary amide has been utilized as a weakly coordinating group for site-selective C-N bond formation reaction. The developed protocol works under external auxiliary-free conditions with a wide substrate scope.
Collapse
Affiliation(s)
- Saksham Mishra
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| | - Anjali Aghi
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| |
Collapse
|
3
|
Zuo Y, Liu M, Du J, Zhang T, Wang X, Wang C. Ir(iii)/Ag(i)-catalyzed directly C-H amidation of arenes with OH-free hydroxyamides as amidating agents. RSC Adv 2024; 14:5975-5980. [PMID: 38362076 PMCID: PMC10867557 DOI: 10.1039/d4ra00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
A versatile Ir(iii)-catalyzed C-H amidation of arenes by employing readily available and stable OH-free hydroxyamides as a novel amidation source. The reaction occurred with high efficiency and tolerance of a range of functional groups. A wide scope of aryl OH-free hydroxyzamides, including conjugated and challenging non-conjugated OH-free hydroxyzamides, were capable of this transformation and no addition of an external oxidant is required. This protocol provided a simple, straightforward and economic method to a variety N-(2-(1H-pyrazol-1-yl)alkyl)amide derivates with good to excellent yield. Mechanistic study demonstrated that reversible C-H bond functionalisation might be involved in this reaction.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Tianren Zhang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| |
Collapse
|
4
|
Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01827b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we discuss the state-of-the-art in arene C–N coupling through C–H activation and to what extent it complies with the principles of green chemistry, with a focus on heterogeneously catalysed systems.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Mickaël Henrion
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Robin Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| |
Collapse
|
5
|
A New Dioxazolone for the Synthesis of 1,2‐Aminoalcohols via Iridium(III)‐Catalyzed C(sp
3
)−H Amidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Antien K, Geraci A, Parmentier M, Baudoin O. A New Dioxazolone for the Synthesis of 1,2-Aminoalcohols via Iridium(III)-Catalyzed C(sp 3 )-H Amidation. Angew Chem Int Ed Engl 2021; 60:22948-22955. [PMID: 34427390 PMCID: PMC8519009 DOI: 10.1002/anie.202110019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Vicinal aminoalcohols are widespread structural motifs in bioactive molecules. We report the development of a new dioxazolone reagent containing a p-nitrophenyldifluoromethyl group, which 1. displays a good safety profile; 2. shows a remarkably high reactivity in the oxime-directed iridium(III)-catalyzed amidation of unactivated C(sp3 )-H bonds; 3. leads to amide products which can be hydrolyzed under mild conditions. The amidation reaction is mild, general and compatible with both primary C-H bonds of tertiary and secondary alcohols, as well as secondary C-H bonds of cyclic secondary alcohols. This method provides an easy access to free 1,2-aminoalcohols after efficient and mild cleavage of the oxime directing group and activated amide.
Collapse
Affiliation(s)
- Kevin Antien
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | - Andrea Geraci
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | | | - Olivier Baudoin
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
7
|
Rui X, Zhu Y, Dai R, Huang C, Wang C, Si D, Wang X, Zhang X, Wen H, Li W, Liu J. An Efficient, Sustainable Rhodium‐Catalyzed and Ionic Liquid‐Mediated C−H Thiolation and Selenation of Acetanilide with Diaryl Disulfides and Diaryl Diselenides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiyan Rui
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Yueyue Zhu
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Rupeng Dai
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Chaoqun Huang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Chao Wang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Dongjuan Si
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Xi Wang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Xiaoyuan Zhang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Hongmei Wen
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Wei Li
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Jian Liu
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| |
Collapse
|
8
|
Chaudhary P, Kandasamy J, Macabeo APG, Tamargo RJI, Lee YR. Recent Advances and Strategies for the Transition‐Metal‐Catalyzed C−H Functionalization of
N
‐Nitrosoanilines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Priyanka Chaudhary
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Jeyakumar Kandasamy
- Department of Chemistry Indian Institute of Technology (BHU), Varanasi Uttar Pradesh 221005 India
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences University of Santo Tomas 1015 Manila Philippines
| | | | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
9
|
Ning Z, Peng X, Bai R, Liu S, Li Z, Jiao L. Iridium Catalyzed C—H Amidation of Benzamides with Phosphoryl Azides in Ionic Liquids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Ahmad A, Dutta HS, Kumar M, Khan AA, Raziullah, Koley D. Pd-Catalyzed C-H Halogenation of Indolines and Tetrahydroquinolines with Removable Directing Group. Org Lett 2020; 22:5870-5875. [PMID: 32657591 DOI: 10.1021/acs.orglett.0c01963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-catalyzed directing-group-assisted regioselective halogenations to C7 of indolines and C8 of tetrahydroquinolines were achieved in good to excellent yields. The practicality and utility of the developed method have been illustrated by various functional group transformations such as arylation, alkenylation, cyanation, and silylation utilizing the installed synthetic handle. The concise synthesis of primaquine, an antimalarial drug, and formal syntheses of two bioactive natural products, hippadine and pratosine, have also been demonstrated.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | | | - Mohit Kumar
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
11
|
Ding H, Lv G, Chen Y, Luo Y, Li J, Guo L, Wu Y. Synthesis of 2,3‐dihydrofurans
via
Lewis acid‐Catalyzed [4+1] Cycloaddition of Enynones with Sulfoxonium Ylides in Ionic Liquids: A Mild and Green Platform. ChemistrySelect 2020. [DOI: 10.1002/slct.202002188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haosheng Ding
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Guanghui Lv
- Department of Pharmacy, Taihe HospitalHubei University of Medicine No. 32 South Renmin Road Huibei, Shiyan 442000 P. R. China
| | - Yuncan Chen
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yi Luo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Li Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| |
Collapse
|
12
|
Muntzeck M, Pippert F, Wilhelm R. Tetraalkylammonium-based ionic liquids for a RuCl3 catalyzed C–H activated homocoupling. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Shi Y, Xing H, Huang T, Liu X, Chen J, Guo X, Li GB, Wu Y. Divergent C-H activation synthesis of chalcones, quinolones and indoles. Chem Commun (Camb) 2020; 56:1585-1588. [PMID: 31934691 DOI: 10.1039/c9cc08926h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We here report a condition-controlled divergent synthesis strategy of chalcones, quinolones and indoles, which was achieved via a C-H activation reaction of N-nitrosoanilines and cyclopropenones. Variations of Ag salts are observed to be crucial for divergently constructing the three distinct chemical scaffolds. A Rh(i)- and Rh(iii)-cocatalyzed decarbonylation/C-H activation/[3+2] annulation cascade reaction was developed for the synthesis of indoles. These methodologies are characterized by mild reaction conditions, high functional group tolerance, and amenability to gram-scale synthesis, providing a reference for future derivation of new chemical scaffolds by C-H activation.
Collapse
Affiliation(s)
- Yuesen Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Huimin Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xuexin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiaoyu Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Jiao LY, Ning ZH, Hong Q, Peng XH, Yin XM, Liu S, Chen H, Li Z, Sun M, Ma XX. Iridium-catalyzed ortho-selective carbon–hydrogen amidation of benzamides with sulfonyl azides in ionic liquid. RSC Adv 2020; 10:29712-29722. [PMID: 35518216 PMCID: PMC9056170 DOI: 10.1039/d0ra05527a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
An efficient and convenient iridium(iii) catalyzed ortho-C–H bond amidation of weakly coordinating benzamides treated with readily available sulfonyl azides as the amino source has been described. In this transformation, ionic liquids represents an ideal reaction medium, giving rise to a broad range of amidation products under mild conditions in the open air. This protocol offers moderate to excellent chemical yields, exclusive regioselectivities, and good functional group tolerance. Ir-catalyzed ortho-C–H amidation of benzamides with sulfonyl azides has been conducted effectively in ionic liquid reaction medium.![]()
Collapse
|
15
|
Hu Y, Wang T, Liu Y, Nie R, Yang N, Wang Q, Li GB, Wu Y. Practical Synthesis of Benzimidazo[1,2- a]quinolines via Rh(III)-Catalyzed C-H Activation Cascade Reaction from Imidamides and Anthranils. Org Lett 2019; 22:501-504. [PMID: 31886675 DOI: 10.1021/acs.orglett.9b04256] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a novel and practical one-pot Rh(III)-catalyzed strategy to construct benzimidazo[1,2-a]quinolines from readily available imidamides and anthranils. The cascade reaction proceeds via a C-H amination-cyclization-cyclization process in ionic liquid without any additives and possesses simple operation, moderate-to-high yield, and broad substrate scope features, which will provide the reference for the construction of biologically active fused benzimidazoles.
Collapse
Affiliation(s)
- Yao Hu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ting Wang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Yanzhao Liu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ruifang Nie
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ninghong Yang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Qiantao Wang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Guo-Bo Li
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Yong Wu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| |
Collapse
|
16
|
Li J, Zhou L, Wang Y, Ma Q, Lei Y, Lai R, Luo Y, Hai L, Wu Y. [Cp*Rh III
] in an Ionic Liquid as a Highly Efficient and Recyclable Catalytic Medium for Regio- and Diastereoselective Csp 3
-H Carbenoid Insertion. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Lin Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yaoling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Qiang Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yuan Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| |
Collapse
|
17
|
Kumar M, Raziullah, Khan AA, Ahmad A, Dutta HS, Kant R, Koley D. Cu(II)-Mediated Cross-Dehydrogenative Coupling of Indolines with Sulfonamides, Carboxamides, and Amines. J Org Chem 2019; 84:13624-13635. [PMID: 31566988 DOI: 10.1021/acs.joc.9b01893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A facile and efficient Cu-mediated protocol for the cross-dehydrogenative coupling of indoline with sulfonamides, carboxamides, and anilines is reported. The reaction takes place through Cu-mediated C7-H activation via a 6-membered metallacycle to afford the amide and amine derivatives in good yields with a wide range of functional group tolerance. The importance of the protocol has been demonstrated by synthesizing the antiproliferative agent, ER-67836.
Collapse
Affiliation(s)
- Mohit Kumar
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| | | | - Afsar Ali Khan
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| | | | | | | | - Dipankar Koley
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| |
Collapse
|
18
|
Zhang J, Xie H, Zhu H, Zhang S, Reddy Lonka M, Zou H. Chameleon-like Behavior of the Directing Group in the Rh(III)-Catalyzed Regioselective C–H Amidation of Indole: An Experimental and Computational Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02512] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinquan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Huajian Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Shuaizhong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Madhava Reddy Lonka
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
19
|
Kong X, Xu B. Manganese‐Catalyzed Oxime‐Directed
ortho
‐C−H Amidation in Ionic Liquids. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xianqiang Kong
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
20
|
Gogula T, Zhang JQ, Zou HB. Rhodium(III)-Catalyzed Regioselective C(sp 2)-H Functionalization of 7-Arylpyrazolo[1,5- a]pyrimidines with Dioxazolones as Amidating Agents. Org Lett 2019; 21:5933-5937. [PMID: 31328523 DOI: 10.1021/acs.orglett.9b02059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rh(III)-catalyzed C-H functionalization of 7-arylpyrazolo[1,5-a]pyrimidines was developed wherein the pyrazolo[1,5-a]pyrimidine moiety is reported for the first time to direct the C-H bond activation. Various 7-arylpyrazolo[1,5-a]pyrimidines underwent smooth C-H amidation with alkyl-, aryl-, and heteroaryl-substituted dioxazolones to afford the products in moderate to good yields. Mechanistic studies suggest that a six-membered rhodacycle intermediate involving N1 might play a key role in the regioselective catalytic cycle.
Collapse
Affiliation(s)
- Thirupathi Gogula
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Jin-Quan Zhang
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Hong-Bin Zou
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| |
Collapse
|
21
|
Raziullah, Kumar M, Kant R, Koley D. Cu‐Catalyzed Directed C7−H Imidation of Indolines via Cross‐Dehydrogenative Coupling. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raziullah
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Mohit Kumar
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Ruchir Kant
- Molecular and Structural Biology DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Dipankar Koley
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| |
Collapse
|
22
|
Yao T, Du K. Temperature-Controlled Mono- and Diolefination of Arene Using Rh(III)/RTIL as an Efficient and Recyclable Catalytic System. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:6068-6077. [DOI: 10.1021/acssuschemeng.8b06262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Tian Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| |
Collapse
|
23
|
Zhu Y, He J, Niu Y, Han T, Zhu K. Rapid Microwave‐Assisted, Solvent‐Free Approach to Functionalization of 8‐Methylquinolines via Rh‐Catalyzed C(sp
3
)‐H Activation. ChemistrySelect 2019. [DOI: 10.1002/slct.201803833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- You‐Quan Zhu
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Jing‐Li He
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Yun‐Xia Niu
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Ting‐Feng Han
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Kun Zhu
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
24
|
Nie R, Lai R, Lv S, Xu Y, Guo L, Wang Q, Wu Y. Water-mediated C–H activation of arenes with secure carbene precursors: the reaction and its application. Chem Commun (Camb) 2019; 55:11418-11421. [PMID: 31482875 DOI: 10.1039/c9cc05804d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A water-mediated C–H activation using sulfoxonium ylides is reported, providing a general, green and step-economic approach to construct a C–C bond and varieties of useful N-heterocycle scaffolds.
Collapse
Affiliation(s)
- Ruifang Nie
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Ruizhi Lai
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Songyang Lv
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yingying Xu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Li Guo
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Qiantao Wang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yong Wu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
25
|
Guo L, Tang B, Nie R, Liu Y, Lv S, Wang H, Guo L, Hai L, Wu Y. C–H alkenylation/cyclization and sulfamidation of 2-phenylisatogens using N-oxide as a directing group. Chem Commun (Camb) 2019; 55:10623-10626. [PMID: 31429452 DOI: 10.1039/c9cc05719f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ru(ii)-Catalyzed C–H alkenylation/cyclization and Ir(iii)-catalyzed C–H sulfamidation provided indol-3-one derivatives and sulfamidated 2-phenylisatogens respectively, with good yields and excellent functional group tolerance.
Collapse
Affiliation(s)
- Lingmei Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Baolan Tang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Ruifang Nie
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yanzhao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Shan Lv
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Huijing Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California San Diego
- La Jolla
- USA
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Li Hai
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|