1
|
Maurya AK, Ansari MF, Elangovan S. Transition Metal Complexes Containing Selenium Ligands for Catalytic Reduction, Oxidation, and Hydrofunctionalization Reactions. Chem Asian J 2025:e202401431. [PMID: 39831417 DOI: 10.1002/asia.202401431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Transition metal-mediated catalytic reduction, oxidation, and hydrofunctionalization reactions are important organic reactions and are considered highly atom-economical. Owing to their unique properties, selenium ligated numerous transition metals-based complexes have been reported for diverse catalytic applications. This review presents the synthesis of various selenium-supported transition metal complexes and their catalytic applications in reduction, oxidation, and hydrofunctionalization reactions. Furthermore, we compare the catalytic activity of various organoselenium ligand-containing transition metal complexes and the replacement of selenium with other chalcogen elements.
Collapse
Affiliation(s)
- Atul Kumar Maurya
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Mohd Farhan Ansari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Saravanakumar Elangovan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
2
|
Kundu BK, Sun Y. Electricity-driven organic hydrogenation using water as the hydrogen source. Chem Sci 2024; 15:d4sc03836c. [PMID: 39371462 PMCID: PMC11450802 DOI: 10.1039/d4sc03836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
Hydrogenation is a pivotal process in organic synthesis and various catalytic strategies have been developed in achieving effective hydrogenation of diverse substrates. Despite the competence of these methods, the predominant reliance on molecular hydrogen (H2) gas under high temperature and elevated pressure presents operational challenges. Other alternative hydrogen sources such as inorganic hydrides and organic acids are often prohibitively expensive, limiting their practical utility on a large scale. In contrast, employing water as a hydrogen source for organic hydrogenation presents an attractive and sustainable alternative, promising to overcome the drawbacks associated with traditional hydrogen sources. Integrated with electricity as the sole driving force under ambient conditions, hydrogenation using water as the sole hydrogen source aligns well with the environmental sustainability goals but also offers a safer and potentially more cost-effective solution. This article starts with the discussion on the inherent advantages and limitations of conventional hydrogen sources compared to water in hydrogenation reactions, followed by the introduction of representative electrocatalytic systems that successfully utilize water as the hydrogen source in realizing a large number of organic hydrogenation transformations, with a focus on heterogeneous electrocatalysts. In summary, transitioning to water as a hydrogen source in organic hydrogenation represents a promising direction for sustainable chemistry. In particular, by exploring and optimizing electrocatalytic hydrogenation systems, the chemical industry can reduce its reliance on hazardous and expensive hydrogen sources, paving the way for safer, greener, and less energy-intensive hydrogenation processes.
Collapse
Affiliation(s)
- Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati Cincinnati Ohio 45221 USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
3
|
Li Y, Liu M, Tang Q, Liang K, Sun Y, Yu Y, Lou Y, Liu Y, Yu H. Hydrogen-transfer strategy in lignin refinery: Towards sustainable and versatile value-added biochemicals. CHEMSUSCHEM 2024; 17:e202301912. [PMID: 38294404 DOI: 10.1002/cssc.202301912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Lignin, the most prevalent natural source of polyphenols on Earth, offers substantial possibilities for the conversion into aromatic compounds, which is critical for attaining sustainability and carbon neutrality. The hydrogen-transfer method has garnered significant interest owing to its environmental compatibility and economic viability. The efficacy of this approach is contingent upon the careful selection of catalytic and hydrogen-donating systems that decisively affect the yield and selectivity of the monomeric products resulting from lignin degradation. This paper highlights the hydrogen-transfer technique in lignin refinery, with a specific focus on the influence of hydrogen donors on the depolymerization pathways of lignin. It delineates the correlation between the structure and activity of catalytic hydrogen-transfer arrangements and the gamut of lignin-derived biochemicals, utilizing data from lignin model compounds, separated lignin, and lignocellulosic biomass. Additionally, the paper delves into the advantages and future directions of employing the hydrogen-transfer approach for lignin conversion. In essence, this concept investigation illuminates the efficacy of the hydrogen-transfer paradigm in lignin valorization, offering key insights and strategic directives to maximize lignin's value sustainably.
Collapse
Affiliation(s)
- Yilin Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Meng Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Qi Tang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Kaixia Liang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yaxu Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yanyan Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| |
Collapse
|
4
|
Yu X, Zhou W, Wan S. 1,4-Reduction of α,β-Unsaturated Ketones through Rhodium(III)-Catalyzed Transfer Hydrogenation. Synlett 2022. [DOI: 10.1055/s-0042-1752986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractA rhodium(III)-catalyzed transfer hydrogenation of unsaturated ketones was developed. The simple catalytic system could be used for the 1,4-reduction of unsaturated cyclic, acyclic ketones, diketones, as well as β-ketoester, and a variety of functional groups were well-tolerated, affording products in moderate to excellent yields.
Collapse
Affiliation(s)
- Xuewen Yu
- Department of Environmental Monitoring, Changsha Environmental Protection College
| | - Wang Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University
- College of Chemical Engineering, Xiangtan University
| | - Saihong Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University
- College of Chemical Engineering, Xiangtan University
| |
Collapse
|
5
|
Li P, Ma F, Fu M, Lu S, Xia X, Li C, Gao YX, Li F. Hydrogenation of furfural to furfuryl alcohol over MOF-derived Fe/Cu@C and Fe3O4/Cu@C catalysts. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00543j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With Cu-MOF-loaded Fe(NO3)3 as the precursor (Fe(NO3)3/Cu-MOF), Fe/Cu@C and Fe3O4/Cu@C catalysts were prepared from heating under the H2 and N2 atmosphere, respectively. When Fe(NO3)3/Cu-MOF was heated under different atmospheres, Cu-MOF...
Collapse
|
6
|
Chen M, Xia J, Li H, Zhao X, Peng Q, Wang J, Gong H, Dai S, An P, Wang H, Hou Z. A Cationic Ru(II) Complex Intercalated into Zirconium Phosphate Layers Catalyzes Selective Hydrogenation via Heterolytic Hydrogen Activation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manyu Chen
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Xia
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Huan Li
- Institute of Crystalline Materials Shanxi University Taiyuan 030006 Shanxi P. R. China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiajia Wang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Honghui Gong
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Pengfei An
- Institute of High Energy Physics Chinese Academy of Sciences Beijing Synchrotron Radiation Facility (BSRF) Beijing 100049 P. R. China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Ding L, Niu YN, Xia XF. Pd-Catalyzed Tandem Isomerization/Cyclization for the Synthesis of Aromatic Oxazaheterocycles and Pyrido[3,4- b]indoles. J Org Chem 2021; 86:10032-10042. [PMID: 34279106 DOI: 10.1021/acs.joc.1c00770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An effient tandem process consisting of palladium-catalyzed double-bond isomerization of long-chain olefins and subsequent intramolecular cyclization promoted by B2(OH)2 for the synthesis of aromatic oxazaheterocycles is disclosed. This strategy can also provide rapid access to pyrido[3,4-b]indoles, trans-2-olefins, and eneamides bearing various functional groups with high regio- and stereoselectivity.
Collapse
Affiliation(s)
- Linglong Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian, Jiangsu 223003, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.,Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China
| |
Collapse
|
8
|
Chen C, Zhou M, Jiang J. Design and preparation of metal‐based carbon nanosheets for
C–O
bond cleavage in the absence of external
H
2. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changzhou Chen
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. on Forest Chemical Engineering SFA Nanjing China
| | - Minghao Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. on Forest Chemical Engineering SFA Nanjing China
| |
Collapse
|
9
|
Deng L, Liu X, Xu J, Zhou Z, Feng S, Wang Z, Xu M. Transfer hydrogenation of CO 2 into formaldehyde from aqueous glycerol heterogeneously catalyzed by Ru bound to LDH. Chem Commun (Camb) 2021; 57:5167-5170. [PMID: 33903867 DOI: 10.1039/d1cc01299a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aqueous glycerol was used in this study as a liquid-phase hydrogen source for the hydrogenation of CO2. It was found that hydrogen could be efficiently evolved from aqueous glycerol upon highly dispersed Ru on layered double hydroxide (LDH), inducing the transformation of CO2 into formaldehyde under base-free conditions at low temperature.
Collapse
Affiliation(s)
- Lidan Deng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaowei Liu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jie Xu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zijian Zhou
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shixiang Feng
- Joint School of National University of Singapore and Tianjin University, Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Zheng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Minghou Xu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
10
|
Gu S, Choi JW, Lee H, Suh DJ, Choi J, Ha JM. Improved catalytic depolymerization of lignin waste using carbohydrate derivatives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115674. [PMID: 33011609 DOI: 10.1016/j.envpol.2020.115674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
CARBOHYDRATE-: or sugar-derived compounds were used as environmentally friendly additives for the depolymerization of Kraft lignin waste and organosolv lignin prepared from Miscanthus giganteus. The yields of the aromatic monomers obtained from Kraft lignin increased from 5.1 to 49.2% with the addition of mannitol, while those obtained from organosolv lignin increased from 44.4 to 83.0% with the addition of sucrose. This improved lignin depolymerization was also confirmed by gel permeation chromatography and nuclear magnetic resonance spectroscopy. The above results clearly indicate the beneficial effects of carbohydrate derivatives on the lignin depolymersization process, more specifically, suggesting that the presence of carbohydrates improve the lignin depolymerization of lignocellulose, as observed for the raw lignocellulose feed.
Collapse
Affiliation(s)
- Sangseo Gu
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Wook Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyunjoo Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dong Jin Suh
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Graduate School of Energy and Environment (Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Myeong Ha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; Graduate School of Energy and Environment (Green School), Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Liu M, Jin X, Zhang G, Xia Q, Lai L, Wang J, Zhang W, Sun Y, Ding J, Yan H, Yang C. Bimetallic AuPt/TiO2 Catalysts for Direct Oxidation of Glucose and Gluconic Acid to Tartaric Acid in the Presence of Molecular O2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Guangyu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Qi Xia
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Linyi Lai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Wenxiang Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Yu Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Jie Ding
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Hao Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| |
Collapse
|
12
|
Zhou S, Qi H. A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co 3O 4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative in situ hydrogenation. NANOSCALE 2020; 12:17373-17384. [PMID: 32789386 DOI: 10.1039/d0nr04431h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Both exploring high-performance catalytic materials with ultrafine active sites from sustainable feedstocks and selective transformation of bio-renewable carboxides are very significant and challenging topics. Herein, we utilized bacterial cellulose to construct highly dispersed Co3O4 nanocatalysts embedded within nitrogen-doped carbon nanofibers (NCNFs). Benefiting from the nanofibrous confinement strategy, a urea-assisted carbonation process and a mild nitrate decomposition process, the cobalt precursor was transformed into ultrasmall and homogeneous Co3O4 nanoparticles (NPs) of ca. 1.57 nm, which is to our knowledge the smallest value among the reported supported Co3O4 materials. The as-obtained Co3O4/NCNF exhibits superior catalytic activity for the selective hydrogenation of bioderived α,β-unsaturated aldehydes with 2-propanol as a H-source, yielding 90-100% conversion under mild conditions. Controlled experiments and detailed characterization revealed that the three-dimensional nanofibrous porous structure can be favourable for improved diffusion and mass transfer, while the uniform distribution of ultrafine Co3O4 NPs and urea-derived abundant basic sites exhibit synergism in the adsorption and activation of reactants, which contributes to excellent catalytic performance. This approach opens up a new way to the design and fabrication of highly dispersed nanocatalysts based on NCNF materials from sustainable natural polymers for biomass valorization.
Collapse
Affiliation(s)
- Shenghui Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. and Guangdong Engineering Research Centre for Green Fine Chemicals, Guangzhou 510640, China
| |
Collapse
|
13
|
Sklyaruk J, Zubar V, Borghs JC, Rueping M. Methanol as the Hydrogen Source in the Selective Transfer Hydrogenation of Alkynes Enabled by a Manganese Pincer Complex. Org Lett 2020; 22:6067-6071. [DOI: 10.1021/acs.orglett.0c02151] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Viktoriia Zubar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jannik C. Borghs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Zhang G, Jin X, Wang J, Liu M, Zhang W, Gao Y, Luo X, Zhang Q, Shen J, Yang C. Fe3+-Mediated Pt/Y Zeolite Catalysts Display Enhanced Metal–Bronsted Acid Interaction and Synergistic Cascade Hydrogenolysis Reactions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Wenxiang Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Yujie Gao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Xiaoqing Luo
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Qinqin Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, Shandong Province 266042, China
| | - Jian Shen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| |
Collapse
|
15
|
Gawande MB, Fornasiero P, Zbořil R. Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04217] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
16
|
Jafarpour F, Rajai-Daryasarei S, Gohari MH. Cascade cyclization versus chemoselective reduction: a solvent-controlled product divergence. Org Chem Front 2020. [DOI: 10.1039/d0qo00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A convenient controllable cascade cyclization and partial reduction of enones for the divergent construction of two types of valuable compounds including polysubstituted thiophenes and saturated ketones are developed.
Collapse
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry
- College of Science
- University of Tehran
- 14155-6455 Tehran
- Iran
| | | | | |
Collapse
|
17
|
Abstract
Biomass has gained great attention as an alternative to fuel-derived chemicals. This report concerns new catalytic systems consisting of [IrCp*Cl2]2 (Cp*: Pentamethylcyclopentadienyl) for the reduction of aldehyde and biogenetic alcohols as hydrogen sources. [IrCp*Cl2]2 has been used as a transfer hydrogenation catalyst using fossil fuel-derived alcohols as hydrogen sources in the presence of a base. In contrast, our system does not require any base, and the reaction can proceed in water. Various types of biogenetic alcohols can be used as hydrogen sources, such as monosaccharides, oligosaccharides, and glycerol. Aromatic and aliphatic aldehydes, as well as ketones, were successfully reduced to the corresponding alcohols in the present system.
Collapse
|
18
|
Iridium-Catalyzed Transfer Hydrogenation of Ketones and Aldehydes Using Glucose as a Sustainable Hydrogen Donor. Catalysts 2019. [DOI: 10.3390/catal9060503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new catalytic system for transfer hydrogenation of carbonyl compounds using glucose as a hydrogen donor was developed. Various ketones and aldehydes were efficiently converted to corresponding alcohols with two equivalents of glucose in the presence of a small amount (0.1 to 1.0 mol%) of iridium catalyst that had a functional ligand. In this catalytic system, transfer hydrogenation reactions proceeded based on the cooperativity of iridium and a functional ligand. It should be noted that environmentally benign water could have been used as a solvent in the present catalytic system for the reduction of various carbonyl substrates. Furthermore, the reaction scope could be extended by using N,N-dimethylacetamide as a reaction solvent.
Collapse
|
19
|
Tavakoli G, Prechtl MHG. The reductive deaminative conversion of nitriles to alcohols using para-formaldehyde in aqueous solution. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01484e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein, for the first time, the application of para-formaldehyde (pFA) to the reductive deamination of both aliphatic and aromatic nitriles in aqueous solution under transfer hydrogenation conditions.
Collapse
Affiliation(s)
- Ghazal Tavakoli
- Department of Chemistry
- University of Cologne
- 50939 Köln
- Germany
| | - Martin H. G. Prechtl
- Department of Chemistry
- University of Cologne
- 50939 Köln
- Germany
- Department of Science and Environment
| |
Collapse
|