1
|
Cao W, Wang XB, Kass SR. Anion-Cation-Anion Ion Triplet Characterization by Computation and Photoelectron Spectroscopy. J Org Chem 2024; 89:18487-18492. [PMID: 39661497 DOI: 10.1021/acs.joc.4c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Ion triplets of the chloride salts of two commonly used weakly coordinating cations are reported (i.e., Cl-·NMe4+Cl- (1-) and Cl-·PPh4+Cl- (2-)). Negative ion photoelectron spectra at 20 K afford vertical and adiabatic detachment energies of 5.18 and 5.00 eV (1-) and 5.03 and 4.70 eV (2-), respectively. These results are well reproduced by coupled cluster calculations with single, double, and perturbative triple excitations (CCSD(T)) whereas M06-2X is systematically too small by ∼0.3 eV (i.e., 7 kcal mol-1). The structures of both 1- and 2- have five or six C-H···Cl- interactions that stabilize these cluster anions by 32 (1-) and 27 (2-) kcal mol-1 as given by their chloride dissociation enthalpies. These values drop to 7.4 and 3.8 kcal mol-1 in dichloromethane based up conductor-like polarizable continuum model calculations and suggest that X-·M+X- ion triplets with a weakly coordinating cation maybe the reactive form of salts under some conditions.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Steven R Kass
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Dempsey SH, Cao W, Wang XB, Kass SR. Anion-Activated Bases and Nucleophiles Characterized by Photoelectron Spectroscopy. J Phys Chem A 2023; 127:8828-8833. [PMID: 37844075 DOI: 10.1021/acs.jpca.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Negative ion photoelectron spectra at 20 K along with ab initio [CCSD(T)] and M06-2X density functional theory calculations are reported for a series of six basic and nucleophilic pyridine derivatives with an anionic substituent [i.e., 3- and 4-PyrBX3-, where X = F, 4-t-BuC6H4, 4-MeOC6H4, and 3,5-(MeO)2C6H3]. Vertical detachment energies (VDEs) of these charge-activated reagents span from 4.50-5.85 eV and are well reproduced by M06-2X/aug-cc-pVTZ and CCSD(T)/maug-cc-pVTZ computations. Surprisingly, the VDEs are found to correlate with the SN2 reactivity of the PPh4+ salts of the substituted pyridine anions with 1-iodooctane in dichloromethane. This provides an experimental measure of the nucleophilicity of these charge-activated anions, which represent a new class of chemical reagent.
Collapse
Affiliation(s)
- Stephen H Dempsey
- Department of Chemistry, University of Minnesota 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Steven R Kass
- Department of Chemistry, University of Minnesota 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
El-Hendawy MM, Desoky IM, Mohamed MMA, Curran HJ. Pyridinium-Inspired Organocatalysts for Carbon Dioxide Fixation: A Density Functional Theory Inspection. J Phys Chem A 2023; 127:29-37. [PMID: 36595451 DOI: 10.1021/acs.jpca.2c05931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current project aims to apply the virtues of minimalism to examine the catalytic ability of commercially organic compounds of small chemical structures to catalyze the coupling reaction between carbon dioxide and propylene oxide (PO) under mild conditions. The proposed catalysts are pyridinium iodide (A), 2-hydroxypyridinium iodide (B), and piperidinium iodide (C), where their structure is based on cooperative acidic and nucleophilic motifs. The quantum chemistry model, M062X-D3/def2-TZVP//M062X-D3/def2-SVPP, was used to understand the reaction mechanism and the catalytic performance. Since the coupling reaction was performed under excess PO, we proposed that PO serves as a reactant and solvent. Therefore, calculations were performed in gas and liquid phases for comparison. The findings indicated that the rate-determining step depends on the chemical structure of the catalyst and whether the phase is a gas or liquid phase. In general, modeling in the liquid phase produces potential energy surfaces of lower energy barriers. The noncovalent interactions reflect the role of hydrogen bonding in controlling the kinetic behavior of the coupling reaction. Based on the finding, catalyst A is the best candidate for transforming CO2 into cyclic carbonates.
Collapse
Affiliation(s)
- Morad M El-Hendawy
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt.,Combustion Chemistry Centre, School of Chemistry, Ryan Institute, MaREI, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ibtesam M Desoky
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt
| | - Mahmoud M A Mohamed
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt
| | - Henry J Curran
- Combustion Chemistry Centre, School of Chemistry, Ryan Institute, MaREI, National University of Ireland Galway, Galway H91 TK33, Ireland
| |
Collapse
|
4
|
Synthesis and Theoretical Study of New Guanylated Cyclophosphazenes and Their Use in the CO2 Fixation into Styrene Carbonate. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Rostami A, Ebrahimi A, Sakhaee N, Golmohammadi F, Al-Harrasi A. Microwave-Assisted Electrostatically Enhanced Phenol-Catalyzed Synthesis of Oxazolidinones. J Org Chem 2021; 87:40-55. [PMID: 34581567 DOI: 10.1021/acs.joc.1c01686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An electrostatically enhanced phenol is utilized as a straightforward, sustainable, and potent one-component organocatalyst for the atom-economic transformation of epoxides to oxazolidinones under microwave irradiation. Integrating a positively charged center into phenols over a modular one-step preparation gives rise to a bifunctional system with improved acidity and activity, competent in rapid assembly of epoxides and isocyanates under microwave irradiation in a short reaction time (20-60 min). A careful assessment of the efficacy of various positively charged phenols and anilines and the impact of several factors, such as catalyst loading, temperature, and the kind of nucleophile, on catalytic reactivity were examined. Under neat conditions, this one-component catalytic platform was exploited to prepare more than 40 examples of oxazolidinones from a variety of aryl- and alkyl-substituted epoxides and isocyanates within minutes, where up to 96% yield and high degree of selectivity were attained. DFT calculations to achieve reaction barriers for different catalytic routes were conducted to provide mechanistic understanding and corroborated the experimental findings in which concurrent epoxide ring-opening and isocyanate incorporation were proposed.
Collapse
Affiliation(s)
- Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Nader Sakhaee
- Roger Adams Laboratory, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Farhad Golmohammadi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| |
Collapse
|
6
|
Polybenzoxazine intrinsically installed N-methylpyridinium iodide functions efficient organocatalyst for CO2 fixation into cyclic carbonate. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Saltarini S, Villegas-Escobar N, Martínez J, Daniliuc CG, Matute RA, Gade LH, Rojas RS. Toward a Neutral Single-Component Amidinate Iodide Aluminum Catalyst for the CO2 Fixation into Cyclic Carbonates. Inorg Chem 2020; 60:1172-1182. [DOI: 10.1021/acs.inorgchem.0c03290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sebastián Saltarini
- Laboratorio de Química Inorgánica, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago-22 6094411, Chile
| | - Nery Villegas-Escobar
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago 8370854, Chile
| | - Javier Martínez
- Laboratorio de Química Inorgánica, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago-22 6094411, Chile
- Instituto de Ciencias Químicas, Facultad de Ciencias, Isla Teja, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Ricardo A. Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago 8370854, Chile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - René S. Rojas
- Laboratorio de Química Inorgánica, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago-22 6094411, Chile
| |
Collapse
|
8
|
|
9
|
Efficient Solvent-Free Synthesis of Cyclic Carbonates from the Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by New Imidazolinium Functionalized Metal Complexes Under 0.1 MPa. Catal Letters 2020. [DOI: 10.1007/s10562-020-03163-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Ebrahimi A, Rezazadeh M, Khosravi H, Rostami A, Al-Harrasi A. An Aminopyridinium Ionic Liquid: A Simple and Effective Bifunctional Organocatalyst for Carbonate Synthesis from Carbon Dioxide and Epoxides. Chempluschem 2020; 85:1587-1595. [PMID: 32729682 DOI: 10.1002/cplu.202000367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Indexed: 12/22/2022]
Abstract
An aminopyridinium ionic liquid is presented as a green, tunable, and active metal-free one-component catalytic system for the atom-efficient transformation of oxiranes and CO2 to cyclic carbonates. Inclusion of a positively charged moiety into aminopyridines, through a simple single-step synthesis, provides a one-component ionic liquid catalytic system with superior activity; effective in ring opening of epoxide, CO2 inclusion, and stabilization of oxoanionic intermediates. An efficiency assessment of a variety of positively charged aminopyridines was pursued, and the impact of temperature, catalyst loading, and the kind of nucleophile on the catalytic performance was also investigated. Under solvent-free conditions, this bifunctional organocatalytic system was used for the preparation of 18 examples of cyclic carbonates from a broad range of alkyl- and aryl-substituted oxiranes and CO2 , where up to 98 % yield and high selectivity were achieved. DFT calculations validated a mechanism in which nucleophilic ring-opening and CO2 inclusion occur simultaneously towards cyclic carbonate formation.
Collapse
Affiliation(s)
- Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, 616, Nizwa, Sultanate of Oman
| | - Mostafa Rezazadeh
- Department of Polymer and Material Chemistry, Shahid Beheshti University, 19839-4716, Tehran, Iran
| | - Hormoz Khosravi
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box, 15875-4416, Tehran, Iran
| | - Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, 616, Nizwa, Sultanate of Oman
| |
Collapse
|
11
|
Rostami A, Ebrahimi A, Husband J, Anwar MU, Csuk R, Al-Harrasi A. Squaramide-Quaternary Ammonium Salt as an Effective Binary Organocatalytic System for Oxazolidinone Synthesis from Isocyanates and Epoxides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - John Husband
- Department of Chemistry; College of Science; Sultan Qaboos University; PO Box 36, Al-Khod 123 Muscat Sultanate of Oman
| | - Muhammad Usman Anwar
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Kurt-Mothes-str. 2; College of Science; Martin-Luther-University Halle-Wittenberg; 06120 Halle Saale Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC); University of Nizwa; 616 Nizwa Sultanate of Oman
| |
Collapse
|
12
|
Zhang P, Zhiani R. Synthesis of Ionic Liquids as Novel Nanocatalysts for Fixation of Carbon Dioxide with Epoxides by Using a Carbon Dioxide Balloon. Catal Letters 2020. [DOI: 10.1007/s10562-020-03135-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Wang H, Zhang Z, Wang H, Guo L, Li L. Metal β-diketonate complexes as highly efficient catalysts for chemical fixation of CO 2 into cyclic carbonates under mild conditions. Dalton Trans 2019; 48:15970-15976. [PMID: 31595278 DOI: 10.1039/c9dt03584b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The potential of metal β-diketonate complexes for the catalysis of the chemical fixation of CO2 into cyclic carbonates at 1 atm CO2 and near room temperature was demonstrated. Their potential for the capture and simultaneous conversion of CO2 in a dilute CO2 stream was also determined. The catalysts were easily synthesized and commercially available. Therefore, this CO2 transformation was less energy- and material-consuming, which made this reaction closer to true "green" chemistry.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Zulei Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Hailong Wang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Liping Guo
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Lei Li
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| |
Collapse
|
14
|
Mesías-Salazar Á, Martínez J, Rojas RS, Carrillo-Hermosilla F, Ramos A, Fernández-Galán R, Antiñolo A. Aromatic guanidines as highly active binary catalytic systems for the fixation of CO2 into cyclic carbonates under mild conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00667b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The formation of hydrogen bonding causes a considerable decrease in the reaction temperature and CO2 pressure used in this process.
Collapse
Affiliation(s)
- Ángela Mesías-Salazar
- Laboratorio de Química Inorgánica
- Facultad de Química
- Universidad Católica de Chile
- Santiago 22 6094411
- Chile
| | - Javier Martínez
- Laboratorio de Química Inorgánica
- Facultad de Química
- Universidad Católica de Chile
- Santiago 22 6094411
- Chile
| | - René S. Rojas
- Laboratorio de Química Inorgánica
- Facultad de Química
- Universidad Católica de Chile
- Santiago 22 6094411
- Chile
| | - Fernando Carrillo-Hermosilla
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Alberto Ramos
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Rafael Fernández-Galán
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Antonio Antiñolo
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| |
Collapse
|
15
|
Yan CX, Wu RZ, Lu K, Yang FL, Yang XS, Wang R, Yang X, Zhou PP, Shao X. Why electrostatically enhanced thiourea is better than Schreiner's thiourea in both catalytic activity and regioselectivity? Org Chem Front 2019. [DOI: 10.1039/c9qo00251k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatically enhanced thiourea is more active and efficient than Schreiner's thiourea in the ring-opening aminolysis of styrene oxide with aniline, and the underlying reasons were explored by DFT calculations.
Collapse
Affiliation(s)
- Chao-Xian Yan
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Rui-Zhi Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Fang-Ling Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Xiao-Shan Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Rui Wang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Xing Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|