1
|
Nowak B, Wądołek A, Mazuryk O, Poznańska A, Majzner K, Majka G, Oszajca M, Barańska M, Stochel G, Marcinkiewicz J. Investigation of the Immunogenic Properties of Ovalbumin Modified by Urban Airborne Particulate Matter. Arch Immunol Ther Exp (Warsz) 2023; 71:13. [PMID: 37245200 DOI: 10.1007/s00005-023-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
Exposure to air particulate matter (PM) is linked to the blood oxidative stress and systemic inflammation. The aim of this study was to elucidate whether oxidative PM modification of ovalbumin (OVA), the major antioxidant serum protein, may alter its antigenicity and/or immunogenicity. Ovalbumin was exposed via dialysis to the standard urban PM (SRM 1648a) or to PM with removed organic content (encoded as LAP). Both structural changes and biological properties of PM-modified OVA were measured. T lymphocytes and dendritic cells (the major antigen-presenting cells) isolated from C57BL/6 and OT-II (323-339 epitope) OVA-specific T cell receptor (TCR)-transgenic mice were used to test the effect of PM on OVA immunogenicity. The immunogenicity of both SRM 1648a and LAP-modified OVA was significantly higher than that of control OVA, as measured by the epitope-specific T cell proliferation and interferon γ production by the stimulated cells. This effect was associated with mild oxidative changes in the carrier molecule outside the structure of the OVA epitope and with increased resistance to proteolysis of PM-modified OVA. Interestingly, dendritic cells showed enhanced capacity for the uptake of proteins when the cells were cultured with PM-modified OVA. Our results suggest that the enhanced immunogenicity of PM-modified OVA is not associated with altered antigenicity or antigen presentation. However, it may result from slower degradation and longer persistence of modified antigens in dendritic cells. Whether this phenomenon is associated with enhanced risk prevalence of autoimmune diseases observed in the areas with high urban PM pollution needs to be explained.
Collapse
Affiliation(s)
- Bernadeta Nowak
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| | - Anna Wądołek
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Olga Mazuryk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Anna Poznańska
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Katarzyna Majzner
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Grzegorz Majka
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Oszajca
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Małgorzata Barańska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Grażyna Stochel
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Janusz Marcinkiewicz
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
2
|
Influence of modified nano-copper oxide particles on the reaction between nitrocobalamin and ascorbic acid. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Blood Plasma's Protective Ability against the Degradation of S-Nitrosoglutathione under the Influence of Air-Pollution-Derived Metal Ions in Patients with Exacerbation of Heart Failure and Coronary Artery Disease. Int J Mol Sci 2021; 22:ijms221910500. [PMID: 34638839 PMCID: PMC8508800 DOI: 10.3390/ijms221910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/27/2022] Open
Abstract
One of the consequences of long-term exposure to air pollutants is increased mortality and deterioration of life parameters, especially among people diagnosed with cardiovascular diseases (CVD) or impaired respiratory system. Aqueous soluble inorganic components of airborne particulate matter containing redox-active transition metal ions affect the stability of S-nitrosothiols and disrupt the balance in the homeostasis of nitric oxide. Blood plasma’s protective ability against the decomposition of S-nitrosoglutathione (GSNO) under the influence of aqueous PM extract among patients with exacerbation of heart failure and coronary artery disease was studied and compared with a group of healthy volunteers. In the environment of CVD patients’ plasma, NO release from GSNO was facilitated compared to the plasma of healthy controls, and the addition of ascorbic acid boosted this process. Model studies with albumin revealed that the amount of free thiol groups is one of the crucial factors in GSNO decomposition. The correlation between the concentration of NO released and -SH level in blood plasma supports this conclusion. Complementary studies on gamma-glutamyltranspeptidase activity and ICP-MS multielement analysis of CVD patients’ plasma samples in comparison to a healthy control group provide broader insights into the mechanism of cardiovascular risk development induced by air pollution.
Collapse
|
4
|
Influence of Krakow Winter and Summer Dusts on the Redox Cycling of Vitamin B12a in the Presence of Ascorbic Acid. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Air pollution remains a serious problem in Krakow, Poland. According to the European Environmental Agency, annual mean levels of both PM2.5 and PM10 recorded in Krakow are much higher than EU limit values. Thus, the influence of particulate matter (PM) on the function of living organisms, as well as different physiological processes, is an urgent subject to be studied. The reported research forms part of the multi-disciplinary project ‘Air Pollution versus Autoimmunity: Role of multiphase aqueous Inorganic Chemistry,’ which aims to demonstrate the PM effect on the immune system. The present studies focused on the role of dust collected in Krakow on the redox cycling of vitamin B12a in the presence of ascorbic acid. Dust samples collected during the winter 2019/2020 and summer 2020 months in the city center of Krakow were characterized using various analytical techniques. The influence of Krakow dusts on the kinetics of the reaction between nitrocobalamin and ascorbic acid was confirmed and discussed in terms of the composition of the samples. Possible reasons for the reported findings are provided.
Collapse
|
5
|
Wądołek A, Oszajca M, Pęcak W, Brindell M, Stochel G. Enhancement of NO release from S-nitrosoalbumin by pollution derived metal ions. Dalton Trans 2021; 50:9923-9933. [PMID: 34223570 DOI: 10.1039/d1dt01260f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S-Nitrosothiols act as a comparatively long-lived reservoir of releasable nitric oxide (NO) present in vivo in a variety of body fluids. Soluble constituents of air-borne particulate matter (PM) can affect S-nitrosothiol stability and deregulate NO-based biological signaling. PM aqueous extracts of standard urban dust (SRM 1648a) were prepared, and their effect on human serum S-nitrosoalbumin (HSA-NO) stability was studied. The results indicated that PM extracts induced a release of NO from HSA-NO in a dose-dependent manner. To identify the inorganic components of urban PM responsible for HSA-NO decomposition, the effects of individual metal ions and metal ion mixtures, detected in the SRM 1648a aqueous extract, were examined. The dominant role of copper ions (specifically Cu+) was confirmed, but the results did not exclude the influence of other water-soluble PM components. Measurements with the application of several common metal ion chelators confirmed that Cu2+ may participate in NO release from HSA-NO and that reduction to monovalent Cu+ (responsible for S-NO bond breaking) may occur with the participation of S-nitrosoalbumin. The addition of ascorbic acid (AscA) significantly enhanced the effectiveness of NO release by PM extracts both kinetically and quantitatively, by inducing an increase in the reduction of Cu2+ to Cu+. These results indicate that AscA present in the respiratory tract lining fluids and plasma may amplify the activity of inorganic components of PM in S-nitrosothiol decomposition.
Collapse
Affiliation(s)
- Anna Wądołek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Wiktoria Pęcak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Małgorzata Brindell
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
6
|
Polaczek J, Stochel G, Eldik R. Can Particulate Matter and Nano Metal Oxide Particles Affect the Redox Cycling of Nitrosylcobalamin in Weakly Acidic Aqueous Solution? Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Justyna Polaczek
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Grażyna Stochel
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Rudi Eldik
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Department of Chemistry and Pharmacy University of Erlangen-Nuremberg Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
7
|
Giacomin H, Unno M, Eichbauer K, Atkins C. Automotive wastes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1223-1228. [PMID: 31529650 DOI: 10.1002/wer.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
A review of the literature from 2018 related to automotive wastes is presented. Topics include solid wastes from autobodies, batteries, tires, and vehicle electronics, in addition to sustainable building materials. Treatment and control of automotive pollution is also discussed, as well as potential toxicological and health risks. PRACTITIONER POINTS: Life cycle analyses and sustainable development automotive components were a key focus of the 2018 literature. Automobiles have been identified as point sources for air and water pollution. Research into energy consumption, emissions control, and catalytic converter behavior was conducted to mitigate the impact of automobile emissions. Potential non-point source control measures were identified. These included biological and chemical degradation of pollutants, as well as adsorption of heavy metals.
Collapse
|