1
|
Liu T, Zhan S, Shen N, Wang L, Szabó Z, Yang H, Ahlquist MSG, Sun L. Bioinspired Active Site with a Coordination-Adaptive Organosulfonate Ligand for Catalytic Water Oxidation at Neutral pH. J Am Chem Soc 2023; 145:11818-11828. [PMID: 37196315 DOI: 10.1021/jacs.3c03415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Many enzymes use adaptive frameworks to preorganize substrates, accommodate various structural and electronic demands of intermediates, and accelerate related catalysis. Inspired by biological systems, a Ru-based molecular water oxidation catalyst containing a configurationally labile ligand [2,2':6',2″-terpyridine]-6,6″-disulfonate was designed to mimic enzymatic framework, in which the sulfonate coordination is highly flexible and functions as both an electron donor to stabilize high-valent Ru and a proton acceptor to accelerate water dissociation, thus boosting the catalytic water oxidation performance thermodynamically and kinetically. The combination of single-crystal X-ray analysis, various temperature NMR, electrochemical techniques, and DFT calculations was utilized to investigate the fundamental role of the self-adaptive ligand, demonstrating that the on-demand configurational changes give rise to fast catalytic kinetics with a turnover frequency (TOF) over 2000 s-1, which is compared to oxygen-evolving complex (OEC) in natural photosynthesis.
Collapse
Affiliation(s)
- Tianqi Liu
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Shaoqi Zhan
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Nannan Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Zoltán Szabó
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Hao Yang
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Mårten S G Ahlquist
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Licheng Sun
- Department of Chemistry, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, China
| |
Collapse
|
2
|
Khan S, Sengupta S, Khan MA, Sk MP, Naskar S. Electrocatalytic water oxidation by heteroleptic ruthenium complexes of 2,6-bis(benzimidazolyl)pyridine Scaffold: a mechanistic investigation. Dalton Trans 2023. [PMID: 37194336 DOI: 10.1039/d3dt00128h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three monomeric ruthenium complexes with anionic ligands [RuII(L)(L1)(DMSO)][ClO4] (1), [RuII(L)(L2)(DMSO)] [PF6] (2), and [RuII(L)(L3)(DMSO)][PF6] (3) [L = pyrazine carboxylate, L1 = 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine, L2 = 4,5-dmbimpy = 2,6-bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)pyridine, L3 = 4-Fbimpy = 2,6-bis(5-fluoro-1H-benzo[d]imidazol-2-yl)pyridine, DMSO = dimethyl sulfoxide] as electrocatalysts for water oxidation are reported herein. The single crystal X-ray structure of the complexes reveals the presence of a DMSO molecule, which is supposed to be the labile group undergoing water exchange under the experimental condition of electrocatalysis. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) study shows the appearance of the catalytic wave for water oxidation at Ru(IV/V) oxidation. LSV, CV, and bulk electrolysis technique has been used to study the redox properties of the complexes and their electrocatalytic activity. A systematic variation on the ligand scaffold has been found to display a profound effect on the rate of electrocatalytic oxygen evolution. Electrochemical and theoretical (density functional theory) studies support the O-O bond formation during water oxidation passes through water nucleophilic attack (WNA) for all the ruthenium complexes. At pH 1, the maximum turnover frequency (TOFmax) has been experimentally obtained as 17556.25 s-1, 31648.41 s-1, and 39.69 s-1 for complexes 1, 2, and 3, respectively, from the foot of wave analysis (FOWA). The high value of TOFmax for complex 2 indicates its efficiency as an electrocatalyst for water oxidation in a homogeneous medium.
Collapse
Affiliation(s)
- Sahanwaj Khan
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla institute of Technology-Mesra, Ranchi, India
| | - Md Adnan Khan
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| | | | - Subhendu Naskar
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| |
Collapse
|
3
|
Wang L, Wang L. Ligands modification strategies for mononuclear water splitting catalysts. Front Chem 2022; 10:996383. [PMID: 36238101 PMCID: PMC9551221 DOI: 10.3389/fchem.2022.996383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Artificial photosynthesis (AP) has been proved to be a promising way of alleviating global climate change and energy crisis. Among various materials for AP, molecular complexes play an important role due to their favorable efficiency, stability, and activity. As a result of its importance, the topic has been extensively reviewed, however, most of them paid attention to the designs and preparations of complexes and their water splitting mechanisms. In fact, ligands design and preparation also play an important role in metal complexes’ properties and catalysis performance. In this review, we focus on the ligands that are suitable for designing mononuclear catalysts for water splitting, providing a coherent discussion at the strategic level because of the availability of various activity studies for the selected complexes. Two main designing strategies for ligands in molecular catalysts, substituents modification and backbone construction, are discussed in detail in terms of their potentials for water splitting catalysts.
Collapse
|
4
|
Das B, Toledo-Carrillo EA, Li L, Ye F, Chen J, Slabon A, Verho O, Eriksson L, Göthelid M, Dutta J, Äkermark B. Cobalt Electrocatalyst on Fluorine Doped Carbon Cloth – a Robust and Partially Regenerable Anode for Water Oxidation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biswanath Das
- Stockholm University: Stockholms Universitet Organic Chemistry Stockholm SWEDEN
| | | | - Lin Li
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Physical Science and Technology CHINA
| | - Fei Ye
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Jianhong Chen
- Stockholm University: Stockholms Universitet MMK SWEDEN
| | - Adam Slabon
- University of Wuppertal: Bergische Universitat Wuppertal Inorganic Chemistry GERMANY
| | - Oscar Verho
- Uppsala Universitet Biomedicinskt Centrum BMC SWEDEN
| | | | - Mats Göthelid
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Joydeep Dutta
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Björn Äkermark
- Stockholms Universitet Organic Chemistry Svante Arrhenius väg 16C, 11418 Stockholm SWEDEN
| |
Collapse
|
5
|
Ghosh A, Dasgupta S, Kundu A, Mandal S. The impact of secondary coordination sphere engineering on water oxidation reactivity catalysed by molecular ruthenium complexes: a next-generation approach to develop advanced catalysts. Dalton Trans 2022; 51:10320-10337. [PMID: 35730327 DOI: 10.1039/d2dt01124g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water oxidation is the bottleneck for producing hydrogen from the water-splitting reaction. Developing efficient water oxidation catalysts (WOCs) has recently been of paramount interest. Ruthenium-based WOCs have gained much attention due to their enriched redox property, robust nature, and superior catalytic performances compared to other transition metal-based molecular catalysts. The performance of a catalyst is highly dependent on the design of the ligand framework. In nature, the secondary coordination sphere around the active site of a metalloenzyme plays a vital role in catalysis. This principle has been employed in the recent development of efficient catalysts. With the aid of secondary interactions, some landmark Ru-based WOCs, producing remarkable turnover frequencies (TOFs) in the order of 104 s-1, have been developed. In this account, we have discussed the underlying chemistry related to the effect of secondary interactions (such as hydrogen-bonding, π-π stacking, electrostatic interaction, hydrophobic-hydrophilic environment, etc.) on the kinetics of the water oxidation reaction catalysed by molecular Ru-complexes. The use of secondary interactions (such as π-π and C-H⋯π) in anchoring the molecular catalyst onto the solid conducting surface has also been discussed. We aim to provide a brief overview of the positive impact of outer-sphere engineering on water oxidation reactivity, which may offer guidelines for developing the next generation of advanced catalysts.
Collapse
Affiliation(s)
- Ayyan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Sreeja Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Animesh Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Sukanta Mandal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| |
Collapse
|
6
|
Li L, Das B, Rahaman A, Shatskiy A, Ye F, Cheng P, Yuan C, Yang Z, Verho O, Kärkäs MD, Dutta J, Weng TC, Åkermark B. Ruthenium containing molecular electrocatalyst on glassy carbon for electrochemical water splitting. Dalton Trans 2022; 51:7957-7965. [PMID: 35546321 DOI: 10.1039/d2dt00824f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrochemical water splitting constitutes one of the most promising strategies for converting water into hydrogen-based fuels, and this technology is predicted to play a key role in the transition towards a carbon-neutral energy economy. To enable the design of cost-effective electrolysis cells based on this technology, new and more efficient anodes with augmented water splitting activity and stability will be required. Herein, we report an active molecular Ru-based catalyst for electrochemically-driven water oxidation (overpotential of ∼395 mV at pH 7 phosphate buffer) and two simple methods for preparing anodes by attaching this catalyst onto glassy carbon through multi-walled carbon nanotubes to improve stability as well as reactivity. The anodes modified with the molecular catalyst were characterized by a broad toolbox of microscopy and spectroscopy techniques, and interestingly no RuO2 formation was detected during electrocatalysis over 4 h. These results demonstrate that the herein presented strategy can be used to prepare anodes that rival the performance of state-of-the-art metal oxide anodes.
Collapse
Affiliation(s)
- Lin Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden.
| | - Ahibur Rahaman
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden.
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Fei Ye
- Department of Applied Physics, Functional Materials, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Peihong Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chunze Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhiqi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Oscar Verho
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden.
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Joydeep Dutta
- Department of Applied Physics, Functional Materials, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden.
| |
Collapse
|
7
|
Bera M, Keshari K, Bhardwaj A, Gupta G, Mondal B, Paria S. Electrocatalytic Water Oxidation Activity of Molecular Copper Complexes: Effect of Redox-Active Ligands. Inorg Chem 2022; 61:3152-3165. [PMID: 35119860 DOI: 10.1021/acs.inorgchem.1c03537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two molecular copper(II) complexes, (NMe4)2[CuII(L1)] (1) and (NMe4)2[CuII(L2)] (2), ligated by a N2O2 donor set of ligands [L1 = N,N'-(1,2-phenylene)bis(2-hydroxy-2-methylpropanamide), and L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(2-hydroxy-2-methylpropanamide)] have been synthesized and thoroughly characterized. An electrochemical study of 1 in a carbonate buffer at pH 9.2 revealed a reversible copper-centered redox couple at 0.51 V, followed by two ligand-based oxidation events at 1.02 and 1.25 V, and catalytic water oxidation at an onset potential of 1.28 V (overpotential of 580 mV). The electron-rich nature of the ligand likely supports access to high-valent copper species on the CV time scale. The results of the theoretical electronic structure investigation were quite consistent with the observed stepwise ligand-centered oxidation process. A constant potential electrolysis experiment with 1 reveals a catalytic current density of >2.4 mA cm-2 for 3 h. A one-electron-oxidized species of 1, (NMe4)[CuIII(L1)] (3), was isolated and characterized. Complex 2, on the contrary, revealed copper and ligand oxidation peaks at 0.505, 0.90, and 1.06 V, followed by an onset water oxidation (WO) at 1.26 V (overpotential of 560 mV). The findings show that the ligand-based oxidation reactions strongly depend upon the ligand's electronic substitution; however, such effects on the copper-centered redox couple and catalytic WO are minimal. The energetically favorable mechanism has been established through the theoretical calculation of stepwise reaction energies, which nicely explains the experimentally observed electron transfer events. Furthermore, as revealed by the theoretical calculations, the O-O bond formation process occurs through a water nucleophilic attack mechanism with an easily accessible reaction barrier. This study demonstrates the importance of redox-active ligands in the development of molecular late-transition-metal electrocatalysts for WO reactions.
Collapse
Affiliation(s)
- Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akhil Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Geetika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhaskar Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Ghaderian A, Kazim S, Khaja Nazeeruddin M, Ahmad S. Strategic factors to design the next generation of molecular water oxidation catalysts: Lesson learned from ruthenium complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Das B, Rahaman A, Shatskiy A, Verho O, Kärkäs MD, Åkermark B. The Impact of Ligand Carboxylates on Electrocatalyzed Water Oxidation. Acc Chem Res 2021; 54:3326-3337. [PMID: 34488345 PMCID: PMC8427742 DOI: 10.1021/acs.accounts.1c00298] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fossil fuel shortage and severe climate changes due to global warming have prompted extensive research on carbon-neutral and renewable energy resources. Hydrogen gas (H2), a clean and high energy density fuel, has emerged as a potential solution for both fulfilling energy demands and diminishing the emission of greenhouse gases. Currently, water oxidation (WO) constitutes the bottleneck in the overall process of producing H2 from water. As a result, the design of efficient catalysts for WO has become an intensively pursued area of research in recent years. Among all the molecular catalysts reported to date, ruthenium-based catalysts have attracted particular attention due to their robust nature and higher activity compared to catalysts based on other transition metals.Over the past two decades, we and others have studied a wide range of ruthenium complexes displaying impressive catalytic performance for WO in terms of turnover number (TON) and turnover frequency (TOF). However, to produce practically applicable electrochemical, photochemical, or photo-electrochemical WO reactors, further improvement of the catalysts' structure to decrease the overpotential and increase the WO rate is of utmost importance. WO reaction, that is, the production of molecular oxygen and protons from water, requires the formation of an O-O bond through the orchestration of multiple proton and electron transfers. Promotion of these processes using redox noninnocent ligand frameworks that can accept and transfer electrons has therefore attracted substantial attention. The strategic modifications of the ligand structure in ruthenium complexes to enable proton-coupled electron transfer (PCET) and atom proton transfer (APT; in the context of WO, it is the oxygen atom (metal oxo) transfer to the oxygen atom of a water molecule in concert with proton transfer to another water molecule) to facilitate the O-O bond formation have played a central role in these efforts.In particular, promising results have been obtained with ligand frameworks containing carboxylic acid groups that either are directly bonded to the metal center or reside in the close vicinity. The improvement of redox and chemical properties of the catalysts by introduction of carboxylate groups in the ligands has proven to be quite general as demonstrated for a range of mono- and dinuclear ruthenium complexes featuring ligand scaffolds based on pyridine, imidazole, and pyridazine cores. In the first coordination sphere, the carboxylate groups are firmly coordinated to the metal center as negatively charged ligands, improving the stability of the complexes and preventing metal leaching during catalysis. Another important phenomenon is the reduction of the potentials required for the formation of higher valent intermediates, especially metal-oxo species, which take active part in the key O-O bond formation step. Furthermore, the free carboxylic acid/carboxylate units in the proximity to the active center have shown exciting proton donor/acceptor properties (through PCET or APT, chemically noninnocent) that can dramatically improve the rate as well as the overpotential of the WO reaction.
Collapse
Affiliation(s)
- Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Ahibur Rahaman
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Andrey Shatskiy
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Oscar Verho
- Department of Medicinal Chemistry, Drug Design and Discovery, Biomedicinskt Centrum BMC, Uppsala University, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Markus D. Kärkäs
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| |
Collapse
|
10
|
Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic tetranuclear manganese-calcium-oxo cluster in the photosynthetic reaction center, photosystem II, provides an excellent blueprint for light-driven water oxidation in nature. The water oxidation reaction has attracted intense interest due to its potential as a renewable, clean, and environmentally benign source of energy production. Inspired by the oxygen-evolving complex of photosystem II, a large of number of highly innovative synthetic bio-inspired molecular catalysts are being developed that incorporate relatively cheap and abundant metals such as Mn, Fe, Co, Ni, and Cu, as well as Ru and Ir, in their design. In this review, we briefly discuss the historic milestones that have been achieved in the development of transition metal catalysts and focus on a detailed description of recent progress in the field.
Collapse
|
11
|
Ruan G, Ghosh P, Fridman N, Maayan G. A Di-Copper-Peptoid in a Noninnocent Borate Buffer as a Fast Electrocatalyst for Homogeneous Water Oxidation with Low Overpotential. J Am Chem Soc 2021; 143:10614-10623. [PMID: 34237937 DOI: 10.1021/jacs.1c03225] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Water electrolysis is a promising approach toward low-cost renewable fuels; however, the high overpotential and slow kinetics limit its applicability. Studies suggest that either dinuclear copper (Cu) centers or the use of borate buffer can lead to efficient catalysis. We previously demonstrated the ability of peptoids-N-substituted glycine oligomers-to stabilize high-oxidation-state metal ions and to form self-assembled di-copper-peptoid complexes. Capitalizing on these features herein we report on a unique Cu-peptoid duplex, Cu2(BEE)2, that is a fast and stable homogeneous electrocatalyst for water oxidation in borate buffer at pH 9.35, with low overpotential and a high turnover frequency of 129 s-1 (peak current measurements) or 5503 s-1 (FOWA); both are the highest reported for Cu-based water electrocatalysts to date. BEE is a peptoid trimer having one 2,2'-bipyridine ligand and two ethanolic groups, easily synthesized on solid support. Cu2(BEE)2 was characterized by single-crystal X-ray diffraction and various spectroscopic and electrochemical techniques, demonstrating its ability to maintain stable in four cycles of controlled potential electrolysis, leading to a high overall turnover number of 51.4 in a total of 2 h. Interestingly, the catalytic activity of control complexes having only one ethanolic side chain is 2 orders of magnitude lower than that of Cu2(BEE)2. On the basis of this comparison and on mechanistic studies, we propose that the ethanolic side chains and the borate buffer have significant roles in the high stability and catalytic activity of Cu2(BEE)2; the -OH groups facilitate protons transfer, while the borate species enables oxygen transfer toward O-O bond formation.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Pritam Ghosh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.,The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
12
|
Hoque MA, Chowdhury AD, Maji S, Benet-Buchholz J, Ertem MZ, Gimbert-Suriñach C, Lahiri GK, Llobet A. Synthesis, Characterization, and Water Oxidation Activity of Isomeric Ru Complexes. Inorg Chem 2021; 60:5791-5803. [PMID: 33829771 DOI: 10.1021/acs.inorgchem.1c00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and characterization of the isomeric ruthenium complexes with the general formula cis- and trans-[Ru(trpy)(qc)X]n+ (trpy is 2,2':6',2″-terpyridine, qc is 8-quinolinecarboxylate, cis-1 and trans-1, X = Cl, n = 0; cis-2 and trans-2, X=OH2, n = 1) with respect to the relative disposition of the carboxylate and X ligands are reported. For comparison purposes, another set of ruthenium complexes with general formula cis- and trans-[Ru(trpy)(pic)(OH2)]+ (pic is 2-picolinate (cis-3, trans-3)) have been prepared. The complexes with a qc ligand show a more distorted geometry compared to the complexes with a pic ligand. In all of the cases, the trans isomers show lower potential values for all of the redox couples relative to the cis isomers. Complexes cis-2 and trans-2 with six-member chelate rings show higher catalytic activity than cis-3 and trans-3. Overall, it was shown that the electronic perturbation to the metal center exerted by different orientation and geometry of the ligands significantly influences both redox properties and catalytic performance.
Collapse
Affiliation(s)
- Md Asmaul Hoque
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | | | - Somnath Maji
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Mehmed Z Ertem
- Chemistry Division, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.,Universitat Autònoma de Barcelona, Departament de Química, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.,Universitat Autònoma de Barcelona, Departament de Química, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
13
|
Vereshchuk N, Holub J, Gil-Sepulcre M, Benet-Buchholz J, Llobet A. Fate of the Molecular Ru–Phosphonate Water Oxidation Catalyst under Turnover Conditions. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nataliia Vereshchuk
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel lí Domingo s/n, 43007 Tarragona, Spain
| | - Jan Holub
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
14
|
From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions. Nat Commun 2021; 12:373. [PMID: 33446649 PMCID: PMC7809030 DOI: 10.1038/s41467-020-20637-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
Significant advances during the past decades in the design and studies of Ru complexes with polypyridine ligands have led to the great development of molecular water oxidation catalysts and understanding on the O−O bond formation mechanisms. Here we report a Ru-based molecular water oxidation catalyst [Ru(bds)(pic)2] (Ru-bds; bds2− = 2,2′-bipyridine-6,6′-disulfonate) containing a tetradentate, dianionic sulfonate ligand at the equatorial position and two 4-picoline ligands at the axial positions. This Ru-bds catalyst electrochemically catalyzes water oxidation with turnover frequencies (TOF) of 160 and 12,900 s−1 under acidic and neutral conditions respectively, showing much better performance than the state-of-art Ru-bda catalyst. Density functional theory calculations reveal that (i) under acidic conditions, the high valent Ru intermediate RuV=O featuring the 7-coordination configuration is involved in the O−O bond formation step; (ii) under neutral conditions, the seven-coordinate RuIV=O triggers the O−O bond formation; (iii) in both cases, the I2M (interaction of two M−O units) pathway is dominant over the WNA (water nucleophilic attack) pathway. Developing efficient molecular water oxidation catalysts for artificial photosynthesis is a challenging task. Here the authors introduce a ruthenium based complex with negatively charged sulfonate groups to effectively drive water oxidation under both acidic and neutral conditions.
Collapse
|
15
|
Fruehwald HM, Moghaddam RB, Melino PD, Ebralidze II, Zenkina OV, Easton EB. Ni on graphene oxide: a highly active and stable alkaline oxygen evolution catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00297j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel oxygen evolution catalyst was prepared by reacting NiCl2·6H2O with electrochemically exfoliated graphene oxide (EGO) using mild reaction conditions, leading to the simultaneous formation and deposition of Ni oxide nanoparticles onto EGO.
Collapse
Affiliation(s)
- Holly M. Fruehwald
- Faculty of Science
- Ontario Tech University (University of Ontario Institute of Technology)
- Oshawa Ontario
- L1G 0C5 Canada
| | - Reza B. Moghaddam
- Faculty of Science
- Ontario Tech University (University of Ontario Institute of Technology)
- Oshawa Ontario
- L1G 0C5 Canada
| | - Peter D. Melino
- Faculty of Science
- Ontario Tech University (University of Ontario Institute of Technology)
- Oshawa Ontario
- L1G 0C5 Canada
| | - Iraklii I. Ebralidze
- Faculty of Science
- Ontario Tech University (University of Ontario Institute of Technology)
- Oshawa Ontario
- L1G 0C5 Canada
| | - Olena V. Zenkina
- Faculty of Science
- Ontario Tech University (University of Ontario Institute of Technology)
- Oshawa Ontario
- L1G 0C5 Canada
| | - E. Bradley Easton
- Faculty of Science
- Ontario Tech University (University of Ontario Institute of Technology)
- Oshawa Ontario
- L1G 0C5 Canada
| |
Collapse
|
16
|
Hoque MA, Gil-Sepulcre M, Benet-Buchholz J, Llobet A, Gimbert-Suriñach C. Synthesis, Electrochemical Characterization, and Water Oxidation Chemistry of Ru Complexes Containing the 2,6-Pyridinedicarboxylato Ligand. Inorg Chem 2020; 59:11432-11441. [DOI: 10.1021/acs.inorgchem.0c01215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Md Asmaul Hoque
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Campus Sescelades, C/Marcel·lí Domingo, s/n, 43007 Tarragona, Spain
| | | | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Autònoma de Barcelona, Departament de Química, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Campus Sescelades, C/Marcel·lí Domingo, s/n, 43007 Tarragona, Spain
| |
Collapse
|