1
|
Rehpenn A, Walter A, Storch G. Molecular Editing of Flavins for Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1458-2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe diverse activity of flavoenzymes in organic transformations has fascinated researchers for a long time. However, when applied outside an enzyme environment, the isolated flavin cofactor only shows largely reduced activity. This highlights the importance of embedding the reactive isoalloxazine core of flavins in defined surroundings. The latter include crucial non-covalent interactions with amino acid side chains or backbone as well as controlled access to reactants such as molecular oxygen. Nevertheless, molecular flavins are increasingly applied in the organic laboratory as valuable organocatalysts. Chemical modification of the parent isoalloxazine structure is of particular interest in this context in order to achieve reactivity and selectivity in transformations, which are so far only known with flavoenzymes or even unprecedented. This review aims to give a systematic overview of the reported designed flavin catalysts and highlights the impact of each structural alteration. It is intended to serve as a source of information when comparing the performance of known catalysts, but also when designing new flavins. Over the last few decades, molecular flavin catalysis has emerged from proof-of-concept reactions to increasingly sophisticated transformations. This stimulates anticipating new flavin catalyst designs for solving contemporary challenges in organic synthesis.1 Introduction2 N1-Modification3 N3-Modification4 N5-Modification5 C6–C9-Modification6 N10-Modification7 Conclusion
Collapse
|
2
|
Okai H, Tanimoto K, Ohkado R, Iida H. Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis. Org Lett 2020; 22:8002-8006. [DOI: 10.1021/acs.orglett.0c02929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
3
|
Nasrollahzadeh M, Shafiei N, Nezafat Z, Soheili Bidgoli NS, Soleimani F. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano)catalysts in sustainable and selective oxidation reactions: A review. Carbohydr Polym 2020; 241:116353. [DOI: 10.1016/j.carbpol.2020.116353] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
|
4
|
Watanabe M, Sakai T, Oka M, Makinose Y, Miyazaki H, Iida H. Non‐Covalently Immobilized Chiral Imidazolidinone on Sulfated‐Chitin: Reusable Heterogeneous Organocatalysts for Asymmetric Diels‐Alder Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mirai Watanabe
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Takuya Sakai
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Marina Oka
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Yuki Makinose
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Hidetoshi Miyazaki
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Hiroki Iida
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| |
Collapse
|
5
|
Desage‐El Murr M. Nature is the Cure: Engineering Natural Redox Cofactors for Biomimetic and Bioinspired Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marine Desage‐El Murr
- Institut de Chimie UMR 7177Université de Strasbourg 1 rue Blaise Pascal Strasbourg 67000 France
| |
Collapse
|