1
|
Wang Y, Chen B, Li L, Mei X, Gu Y, Wu H, He M, Han B. Thermally-Stable Single-Site Pd on CeO 2 Catalyst for Selective Amination of Phenols to Aromatic Amines without External Hydrogen. Angew Chem Int Ed Engl 2024; 63:e202412062. [PMID: 39315608 DOI: 10.1002/anie.202412062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Developing a new route to produce aromatic amines as key chemicals from renewable phenols is a benign alternative to current fossil-based routes like nitroaromatic hydrogenation, but is challenging because of the high dissociation energy of the Ar-OH bond and difficulty in controlling side reactions. Herein, an aerosolizing-pyrolysis strategy was developed to prepare high-density single-site cationic Pd species immobilized on CeO2 (Pd1/CeO2) with excellent sintering resistance. The obtained Pd1/CeO2 catalysts achieved remarkable selectivity of important aromatic amines (yield up to 76.2 %) in the phenols amination with amines without external hydrogen sources, while Pd nano-catalysts mainly afforded phenyl-ring-saturation products. The excellent catalytic properties of the Pd1/CeO2 are closely related to high-loading Pd single-site catalysts with abundant surface defect sites and suitable acid-base properties. This report provides a sustainable route for producing aromatic amines from renewable feedstocks.
Collapse
Affiliation(s)
- Yaqin Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| |
Collapse
|
2
|
Luan S, Wu W, Zheng B, Wu Y, Dong M, Shen X, Wang T, Deng Z, Zhang B, Chen B, Xing X, Wu H, Liu H, Han B. Atomically dispersed cobalt catalysts for tandem synthesis of primary benzylamines from oxidized β-O-4 segments. Chem Sci 2024; 15:10954-10962. [PMID: 39027282 PMCID: PMC11253118 DOI: 10.1039/d4sc01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
This work presents an innovative approach focusing on fine-tuning the coordination environment of atomically dispersed cobalt catalysts for tandem synthesis of primary benzylamines from oxidized lignin model compounds. By meticulously regulating the Co-N coordination environment, the activity of these catalysts in the hydrogenolysis and reductive amination reactions was effectively controlled. Notably, our study demonstrates that, in contrast to cobalt nanoparticle catalysts, atomically dispersed cobalt catalysts exhibit precise control of the sequence of hydrogenolysis and reductive amination reactions. Particularly, the CoN3 catalyst with a triple Co-N coordination number achieved a remarkable 94% yield in the synthesis of primary benzylamine. To our knowledge, there is no previous documentation of the synthesis of primary benzylamines from lignin dimer model compounds. Our study highlights a promising one-pot route for sustainable production of nitrogen-containing aromatic chemicals from lignin.
Collapse
Affiliation(s)
- Sen Luan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Bingxiao Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Functional Polymer Materials R&D and Engineering Application Technology Innovation Center of Hebei, XingTai University Xingtai Hebei 050041 China
| | - Yuxuan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaojun Shen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
| | - Tianjiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zijie Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
3
|
Li Y, Liu M, Tang Q, Liang K, Sun Y, Yu Y, Lou Y, Liu Y, Yu H. Hydrogen-transfer strategy in lignin refinery: Towards sustainable and versatile value-added biochemicals. CHEMSUSCHEM 2024; 17:e202301912. [PMID: 38294404 DOI: 10.1002/cssc.202301912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Lignin, the most prevalent natural source of polyphenols on Earth, offers substantial possibilities for the conversion into aromatic compounds, which is critical for attaining sustainability and carbon neutrality. The hydrogen-transfer method has garnered significant interest owing to its environmental compatibility and economic viability. The efficacy of this approach is contingent upon the careful selection of catalytic and hydrogen-donating systems that decisively affect the yield and selectivity of the monomeric products resulting from lignin degradation. This paper highlights the hydrogen-transfer technique in lignin refinery, with a specific focus on the influence of hydrogen donors on the depolymerization pathways of lignin. It delineates the correlation between the structure and activity of catalytic hydrogen-transfer arrangements and the gamut of lignin-derived biochemicals, utilizing data from lignin model compounds, separated lignin, and lignocellulosic biomass. Additionally, the paper delves into the advantages and future directions of employing the hydrogen-transfer approach for lignin conversion. In essence, this concept investigation illuminates the efficacy of the hydrogen-transfer paradigm in lignin valorization, offering key insights and strategic directives to maximize lignin's value sustainably.
Collapse
Affiliation(s)
- Yilin Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Meng Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Qi Tang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Kaixia Liang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yaxu Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yanyan Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| |
Collapse
|
4
|
Zhang Y, Li JN, Wang JX, Hu J, Sun JL, Li YF, Li WL, Tang ZH, Zhang ZF. Aniline antioxidants in road dust, parking lot dust, and green-belt soil in Harbin, a megacity in China: Occurrence, profile, and seasonal variation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134001. [PMID: 38479136 DOI: 10.1016/j.jhazmat.2024.134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Aniline antioxidants (ANs) are widely used as industrial chemicals in products composed of rubber. ANs originate mainly from vehicles, where tire wear particles end up in dust and soil after being deposited on roads. Nowadays, limited information is available on the fate and seasonal variation of ANs in the road environment. In this study, we investigated the occurrence of 32 ANs in dust and soil from different road environments, including road dust, garage dust, parking lot dust, and green-belt soil. The total concentrations of ANs were 369 ng g-1 in road dust, 712 ng g-1 in garage dust, and 687 ng g-1 in parking lot dust. These concentrations are several times higher than that in green-belt soil (128 ng g-1). The highest concentrations of N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6PPD) were found in dust and soil. Furthermore, notable seasonal differences were observed, with significantly higher concentrations of ANs in autumn than those in spring. In the main urban area, roads with high traffic volume exhibited higher concentrations of ANs than those with low traffic volume, indicating that ANs were produced by vehicle-related sources.
Collapse
Affiliation(s)
- Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Hu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jia-Lin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin 150066, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA & IJRC-AEE-NA, Toronto, Ontario M2N 6×9, Canada
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Guo YY, Tian ZH, Wang L, Lai ZD, Li L, Li YQ. Chemoenzymatic Synthesis of Phenol Diarylamine Using Non-Heme Diiron N-Oxygenase. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yuan-Yang Guo
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ze-Hua Tian
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Luying Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zheng-De Lai
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Lingjun Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
6
|
Direct Amination of Benzene with Molecular Nitrogen Enabled by Plasma‐Liquid Interactions. Angew Chem Int Ed Engl 2022; 61:e202203680. [DOI: 10.1002/anie.202203680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/07/2022]
|
7
|
Xu X, Zhao X, Tang J, Duan Y, Tian Y. Direct Amination of Benzene with Molecular Nitrogen Enabled by Plasma‐Liquid Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710027 China
| | - Xuyang Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710027 China
| | - Jie Tang
- State Key Laboratory of Transient Optics and Photonics Xi'an Institute of Optics and Precision Mechanics of CAS Xi'an Shaanxi 710119 China
| | - Yixiang Duan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710027 China
| | - Yong‐Hui Tian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710027 China
| |
Collapse
|
8
|
Trombettoni V, Ferlin F, Valentini F, Campana F, Silvetti M, Vaccaro L. POLITAG-Pd(0) catalyzed continuous flow hydrogenation of lignin-derived phenolic compounds using sodium formate as a safe H-source. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Afanasyev OI, Kuchuk EA, Muratov KM, Denisov GL, Chusov D. Symmetrical Tertiary Amines: Applications and Synthetic Approaches. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oleg I. Afanasyev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Ekaterina A. Kuchuk
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Karim M. Muratov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Gleb L. Denisov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Denis Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
- National Research University Higher School of Economics Miasnitskaya Str. 20 Moscow 101000 Russian Federation
| |
Collapse
|
10
|
Qiu Z, Zeng H, Li CJ. Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization-Rearomatization Processes. Acc Chem Res 2020; 53:2395-2413. [PMID: 32941014 DOI: 10.1021/acs.accounts.0c00479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions represent one of the most straightforward and efficient protocols to assemble two different molecular motifs for the construction of carbon-carbon or carbon-heteroatom bonds. Because of their importance and wide applications in pharmaceuticals, agrochemicals, materials, etc., cross-coupling reactions have been well recognized in the 2010 Nobel Prize in chemistry. However, in the classical transition-metal-catalyzed cross-coupling reactions (e.g., the Suzuki-Miyaura, the Buchwald-Hartwig, and the Ullmann cross-coupling reactions), organohalides, which mainly stem from the nonrenewable fossil resources, are often utilized as coupling partners with halide wastes being generated after the reactions. To make cross-coupling reactions more sustainable, we initiated a general research program by employing phenols and cyclohexa(e)nones (the reduced forms of phenols) as pivotal feedstocks (coupling partners), instead of the commonly used fossil-derived organohalides, for cross-coupling reactions to build C-O, C-N, and C-C bonds. Phenols (cyclohexa(e)nones) are widely available and can be obtained from lignin biomass, highlighting their renewable and sustainable features. Moreover, water is expected to be the only stoichiometric byproduct, thus avoiding halide wastes.Notably, the cross-coupling reactions utilizing phenols/cyclohexa(e)nones are not based on the traditional transition-metal-catalyzed "oxidative-addition and reductive-elimination" mechanism, but via a novel "phenol-cyclohexanone" redox couple. This new working mechanism opens up new horizons of designing cross-coupling reactions via simple nucleophilic addition of cyclohexanones along with aromatization processes, thereby simplifying the design and avoiding laborious optimization of transition-metal precursors (e.g., Pd, Ni, Cu, etc.), as well as ligands in classical transition-metal-catalyzed cross-coupling reactions. Specifically, in this Account, we will summarize and discuss our related research work in the following three categories: "formal oxidative couplings of cyclohexa(e)nones", "formal reductive couplings of phenols", and "formal redox-neutral couplings of phenols". The successes of these research projects clearly demonstrated our initial inspirations and rational designs to develop cross-coupling reactions without the "conventional cross-coupling conditions" by pushing the reaction frontiers from initial cyclohexanones, ultimately, to the sustainable phenol targets.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
11
|
Liang W, Xie F, Yang Z, Zeng Z, Xia C, Li Y, Zhu Z, Chen X. Mono/Dual Amination of Phenols with Amines in Water. Org Lett 2020; 22:8291-8295. [PMID: 32915584 DOI: 10.1021/acs.orglett.0c02924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We herein describe a practical direct amination of phenols through a palladium-catalyzed hydrogen-transfer-mediated activation method to synthesize the secondary and tertiary amines. In this conversion, environmentally friendly water and inexpensive ammonium formate were used as solvent and reductant, respectively. A range of amines, including aliphatic amines, aniline, secondary amines, and diamines, could be coupled effectively by this method to achieve mono/dual amination and cyclization of phenols. This study not only provides a green and mild strategy for the synthesis of secondary and tertiary naphthylamines but also expands the synthesis of chloroquine in organic chemistry.
Collapse
Affiliation(s)
- Wanyi Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhihai Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zheng Zeng
- Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Chuanjiang Xia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
12
|
Li CJ, Zeng H, Lang Y. Dearomatization–Rearomatization Strategy for Palladium-Catalyzed C–N Cross-Coupling Reactions. Synlett 2020. [DOI: 10.1055/s-0040-1705901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractSubstituted aromatic compounds play important roles in materials, biological agents, dyes, etc. Thus, the synthesis of substituted aromatic compounds has been a hot topic throughout the history of organic chemistry. Traditionally, the Friedel–Crafts reaction was a powerful tool for synthesizing substituted aromatic compounds. In recent decades, metal-catalyzed cross-coupling reactions were well developed via carbon–heteroatom bond cleavage, however, having difficulties towards some strong bonds, such as C(Ar)–OH. To overcome such challenges, newer strategies are needed. In this review, we summarize the recent efforts in the development of dearomatization–rearomatization strategy for cross-coupling reactions via C(Ar)–O bond cleavage.1 Introduction2 Dearomatization–Rearomatization Strategy for Cross-Coupling of Phenols3 Dearomatization–Rearomatization Strategy for Cross-Coupling of Biphenols4 Dearomatization–Rearomatization Strategy for Cross-Coupling of Diphenyl Ethers5 Dearomatization–Rearomatization Strategy for Cross-Coupling of Indoles6 Summary
Collapse
Affiliation(s)
- Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
| | - Yatao Lang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
| |
Collapse
|
13
|
Ichitsuka T, Takahashi I, Koumura N, Sato K, Kobayashi S. Continuous Synthesis of Aryl Amines from Phenols Utilizing Integrated Packed-Bed Flow Systems. Angew Chem Int Ed Engl 2020; 59:15891-15896. [PMID: 32643862 DOI: 10.1002/anie.202005109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/31/2020] [Indexed: 12/23/2022]
Abstract
Aryl amines are important pharmaceutical intermediates among other numerous applications. Herein, an environmentally benign route and novel approach to aryl amine synthesis using dehydrative amination of phenols with amines and styrene under continuous-flow conditions was developed. Inexpensive and readily available phenols were efficiently converted into the corresponding aryl amines, with small amounts of easily removable co-products (i.e., H2 O and alkanes), in multistep continuous-flow reactors in the presence of heterogeneous Pd catalysts. The high product selectivity and functional-group tolerance of this method allowed aryl amines with diverse functional groups to be selectively obtained in high yields over a continuous operation time of one week.
Collapse
Affiliation(s)
- Tomohiro Ichitsuka
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Ikko Takahashi
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nagatoshi Koumura
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Shū Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
14
|
Qiu Z, Li CJ. Transformations of Less-Activated Phenols and Phenol Derivatives via C–O Cleavage. Chem Rev 2020; 120:10454-10515. [DOI: 10.1021/acs.chemrev.0c00088] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
15
|
Grozavu A, Hepburn HB, Bailey EP, Lindsay-Scott PJ, Donohoe TJ. Rhodium catalysed C-3/5 methylation of pyridines using temporary dearomatisation. Chem Sci 2020; 11:8595-8599. [PMID: 34123119 PMCID: PMC8163342 DOI: 10.1039/d0sc02759f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pyridines are ubiquitous aromatic rings used in organic chemistry and are crucial elements of the drug discovery process. Herein we describe a new catalytic method that directly introduces a methyl group onto the aromatic ring; this new reaction is related to hydrogen borrowing, and is notable for its use of the feedstock chemicals methanol and formaldehyde as the key reagents. Conceptually, the C-3/5 methylation of pyridines was accomplished by exploiting the interface between aromatic and non-aromatic compounds, and this allows an oscillating reactivity pattern to emerge whereby normally electrophilic aromatic compounds become nucleophilic in the reaction after activation by reduction. Thus, a set of C-4 functionalised pyridines can be mono or doubly methylated at the C-3/5 positions. Electron poor pyridines can be activated by reduction and then methylated at C3/5 using formaldehyde.![]()
Collapse
Affiliation(s)
- Alexandru Grozavu
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Hamish B Hepburn
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Elliot P Bailey
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | | | - Timothy J Donohoe
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| |
Collapse
|
16
|
Ichitsuka T, Takahashi I, Koumura N, Sato K, Kobayashi S. Continuous Synthesis of Aryl Amines from Phenols Utilizing Integrated Packed‐Bed Flow Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tomohiro Ichitsuka
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - Ikko Takahashi
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - Nagatoshi Koumura
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - Shū Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
17
|
Liu F, Jiang H, Zhou Y, Shi Z. Direct Transformation of Arenols Based on C—O Activation. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology 100 Haiquan Rd Shanghai 201418 China
- Department of ChemistryFudan University 2005 Honghu Rd Shanghai 200438 China
| | - Hao‐jun Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology 100 Haiquan Rd Shanghai 201418 China
| | - Yi Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology 100 Haiquan Rd Shanghai 201418 China
| | - Zhang‐jie Shi
- Department of ChemistryFudan University 2005 Honghu Rd Shanghai 200438 China
| |
Collapse
|
18
|
Takayama S, Yatabe T, Koizumi Y, Jin X, Nozaki K, Mizuno N, Yamaguchi K. Synthesis of unsymmetrically substituted triarylamines via acceptorless dehydrogenative aromatization using a Pd/C and p-toluenesulfonic acid hybrid relay catalyst. Chem Sci 2020; 11:4074-4084. [PMID: 34122873 PMCID: PMC8152582 DOI: 10.1039/c9sc06442g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An efficient and convenient procedure for synthesizing triarylamines based on a dehydrogenative aromatization strategy has been developed. A hybrid relay catalyst comprising carbon-supported Pd (Pd/C) and p-toluenesulfonic acid (TsOH) was found to be effective for synthesizing a variety of triarylamines bearing different aryl groups starting from arylamines (diarylamines or anilines), using cyclohexanones as the arylation sources under acceptorless conditions with the release of gaseous H2. The proposed reaction comprises the following relay steps: condensation of arylamines and cyclohexanones to produce imines or enamines, dehydrogenative aromatization of the imines or enamines over Pd nanoparticles (NPs), and elimination of H2 from the Pd NPs. In this study, an interesting finding was obtained indicating that TsOH may promote the dehydrogenation. An efficient and convenient procedure for synthesizing triarylamines based on a dehydrogenative aromatization strategy has been developed.![]()
Collapse
Affiliation(s)
- Satoshi Takayama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
| | - Yu Koizumi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
| |
Collapse
|
19
|
Recyclable Pd/C catalyzed one-step reduction of carbonyls to hydrocarbons under simple conditions without extra base. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Xie F, Li Y, Chen X, Chen L, Zhu Z, Li B, Huang Y, Zhang K, Zhang M. Direct synthesis of novel quinoxaline derivatives via palladium-catalyzed reductive annulation of catechols and nitroarylamines. Chem Commun (Camb) 2020; 56:5997-6000. [DOI: 10.1039/c9cc09649c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A palladium-catalyzed new hydrogenative annulation reaction of catechols and nitroarylamines, allowing straightforward access to two classes of novel quinoxaline derivatives, has been demonstrated.
Collapse
Affiliation(s)
- Feng Xie
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Yibiao Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Lu Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Bin Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Yubing Huang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Kun Zhang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Min Zhang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
- South China University of Technology
| |
Collapse
|
21
|
Wang Z, Niu J, Zeng H, Li CJ. Construction of Spirocyclic Tetrahydro-β-carbolines via Cross-Annulation of Phenols with Tryptamines in Water. Org Lett 2019; 21:7033-7037. [PMID: 31436437 DOI: 10.1021/acs.orglett.9b02613] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phenols are readily available by degradation of lignin resource. Palladium-catalyzed conversion of phenols to tetrahydro-β-carboline skeletons bearing a spirocycle at the C-1 position in water is reported. Various substituted phenols are successfully cross-annulated with different tryptamines via sequential C(Ar)-O bond cleavage of phenols, C-H bond activation of tryptamines, and C-N/C-C bond formations. This method provides a new protocol of converting lignin phenols into high-value-added compounds, such as natural product Komavine.
Collapse
Affiliation(s)
- Zemin Wang
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiabin Niu
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|