1
|
Qorbani M, Chen KH, Chen LC. Hybrid and Asymmetric Supercapacitors: Achieving Balanced Stored Charge across Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400558. [PMID: 38570734 DOI: 10.1002/smll.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Indexed: 04/05/2024]
Abstract
An electrochemical capacitor configuration extends its operational potential window by leveraging diverse charge storage mechanisms on the positive and negative electrodes. Beyond harnessing capacitive, pseudocapacitive, or Faradaic energy storage mechanisms and enhancing electrochemical performance at high rates, achieving a balance of stored charge across electrodes poses a significant challenge over a wide range of charge-discharge currents or sweep rates. Consequently, fabricating hybrid and asymmetric supercapacitors demands precise electrochemical evaluations of electrode materials and the development of a reliable methodology. This work provides an overview of fundamental aspects related to charge-storage mechanisms and electrochemical methods, aiming to discern the contribution of each process. Subsequently, the electrochemical properties, including the working potential windows, rate capability profiles, and stabilities, of various families of electrode materials are explored. It is then demonstrated, how charge balancing between electrodes falters across a broad range of charge-discharge currents or sweep rates. Finally, a methodology for achieving charge balance in hybrid and asymmetric supercapacitors is proposed, outlining multiple conditions dependent on loaded mass and charge-discharge current. Two step-by-step tutorials and model examples for applying this methodology are also provided. The proposed methodology is anticipated to stimulate continued dialogue among researchers, fostering advancements in achieving stable and high-performance supercapacitor devices.
Collapse
Affiliation(s)
- Mohammad Qorbani
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Ran F, Hu M, Deng S, Wang K, Sun W, Peng H, Liu J. Designing transition metal-based porous architectures for supercapacitor electrodes: a review. RSC Adv 2024; 14:11482-11512. [PMID: 38595725 PMCID: PMC11002841 DOI: 10.1039/d4ra01320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Over the past decade, transition metal (TM)-based electrodes have shown intriguing physicochemical properties and widespread applications, especially in the field of supercapacitor energy storage owing to their diverse configurations, composition, porosity, and redox reactions. As one of the most intriguing research interests, the design of porous architectures in TM-based electrode materials has been demonstrated to facilitate ion/electron transport, modulate their electronic structure, diminish strain relaxation, and realize synergistic effects of multi-metals. Herein, the recent advances in porous TM-based electrodes are summarized, focusing on their typical synthesis strategies, including template-mediated assembly, thermal decomposition strategy, chemical deposition strategy, and host-guest hybridization strategy. Simultaneously, the corresponding conversion mechanism of each synthesis strategy are reviewed, and the merits and demerits of each strategy in building porous architectures are also discussed. Subsequently, TM-based electrode materials are categorized into TM oxides, TM hydroxides, TM sulfides, TM phosphides, TM carbides, and other TM species with a detailed review of their crystalline phase, electronic structure, and microstructure evolution to tune their electrochemical energy storage capacity. Finally, the challenges and prospects of porous TM-based electrode materials are presented to guide the future development in this field.
Collapse
Affiliation(s)
- Feitian Ran
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Meijie Hu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Shulin Deng
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Kai Wang
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Hui Peng
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Jifei Liu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
3
|
Si P, Zheng Z, Gu Y, Geng C, Guo Z, Qin J, Wen W. Nanostructured TiO 2 Arrays for Energy Storage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103864. [PMID: 37241492 DOI: 10.3390/ma16103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Because of their extensive specific surface area, excellent charge transfer rate, superior chemical stability, low cost, and Earth abundance, nanostructured titanium dioxide (TiO2) arrays have been thoroughly explored during the past few decades. The synthesis methods for TiO2 nanoarrays, which mainly include hydrothermal/solvothermal processes, vapor-based approaches, templated growth, and top-down fabrication techniques, are summarized, and the mechanisms are also discussed. In order to improve their electrochemical performance, several attempts have been conducted to produce TiO2 nanoarrays with morphologies and sizes that show tremendous promise for energy storage. This paper provides an overview of current developments in the research of TiO2 nanostructured arrays. Initially, the morphological engineering of TiO2 materials is discussed, with an emphasis on the various synthetic techniques and associated chemical and physical characteristics. We then give a brief overview of the most recent uses of TiO2 nanoarrays in the manufacture of batteries and supercapacitors. This paper also highlights the emerging tendencies and difficulties of TiO2 nanoarrays in different applications.
Collapse
Affiliation(s)
- Pingyun Si
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Zhilong Zheng
- Zhanjiang Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhanjiang 524001, China
| | - Yijie Gu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chao Geng
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Zhizhong Guo
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Jiayi Qin
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Wei Wen
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Li T, Dong Z, Zhao Y, Yuan Y, Li Z, Lin H, Han S. Reduced Ti-Nb-O nanotube arrays with co-doping of Nb and Ti3+/Vo as a high-performance supercapacitor electrode for enhanced electrochemical energy storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Swaroop R, Rani P, Jamwal G, Sabavath G, Kumar H, Jewariya Y. Enhancing the electrochemical performance of TiO 2 based material using microwave air plasma treatment with an ECR cavity. Front Chem 2022; 10:1065153. [PMID: 36505733 PMCID: PMC9729354 DOI: 10.3389/fchem.2022.1065153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
The microwave-based plasma treatment facility at the Central University of Punjab Bathinda (CUPB) based on 2.45 GHz has been used to investigate the impact on the electrochemical performance of TiO2. This was accomplished by treating a number of pellets of TiO2 sample material with microwave plasma at an input power of 80 W. The palette is subjected to microwave plasma treatment at 30-, 60-, 80-, and 100-s intervals. Many such characterization methods, including UV-visible spectroscopy, FTIR, XRD, and FESEM, have been applied to the study of the impact of plasma treatment on other physical and chemical properties in the context of untreated pellets. In the 80-s plasma treatment, the FTIR study showed that the (O-Ti-O) vibration band at 500-900 cm-1 was wider than other bands. The UV results showed that an 80-s plasma treatment decreased the sample's band gap by 37% and increased the amount of disordered, amorphous material in the sample that had not been treated. XRD studies show that a sample that was treated with plasma for 80 s has low crystallinity and a high disorder (amorphous) factor. The Nyquist plot showed that the electrochemical charge transfer resistance drops from 7 (not treated) to 4 after 80 s of plasma treatment. In a study of electrochemical performance, a sample that was treated with plasma for 80 s has a capacitance that is 35% higher than a sample that was not treated.
Collapse
Affiliation(s)
- Ram Swaroop
- Department of Physics, Central University of Punjab, Bathinda, India,*Correspondence: Ram Swaroop,
| | - Pinki Rani
- Department of Physics, Central University of Punjab, Bathinda, India
| | - Gaurav Jamwal
- Department of Physics Jamia Millia Islamia, New Delhi, India
| | - Gopikishan Sabavath
- Department of Physics Kandlakoya Medchal, CMR Engineering College, Hyderabad, India
| | - Haldhar Kumar
- Department of Geology, Central University of Punjab, Bathinda, India
| | - Yogesh Jewariya
- Department of Physics, Central University of Punjab, Bathinda, India
| |
Collapse
|
6
|
Eskandari M, Shahbazi N, Marcos AV, Malekfar R, Taboada P. Facile MOF-derived NiCo2O4/r-GO nanocomposites for electrochemical energy storage applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Santos JS, Araújo PDS, Pissolitto YB, Lopes PP, Simon AP, Sikora MDS, Trivinho-Strixino F. The Use of Anodic Oxides in Practical and Sustainable Devices for Energy Conversion and Storage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E383. [PMID: 33466856 PMCID: PMC7830790 DOI: 10.3390/ma14020383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
This review addresses the main contributions of anodic oxide films synthesized and designed to overcome the current limitations of practical applications in energy conversion and storage devices. We present some strategies adopted to improve the efficiency, stability, and overall performance of these sustainable technologies operating via photo, photoelectrochemical, and electrochemical processes. The facile and scalable synthesis with strict control of the properties combined with the low-cost, high surface area, chemical stability, and unidirectional orientation of these nanostructures make the anodized oxides attractive for these applications. Assuming different functionalities, TiO2-NT is the widely explored anodic oxide in dye-sensitized solar cells, PEC water-splitting systems, fuel cells, supercapacitors, and batteries. However, other nanostructured anodic films based on WO3, CuxO, ZnO, NiO, SnO, Fe2O3, ZrO2, Nb2O5, and Ta2O5 are also explored and act as the respective active layers in several devices. The use of AAO as a structural material to guide the synthesis is also reported. Although in the development stage, the proof-of-concept of these devices demonstrates the feasibility of using the anodic oxide as a component and opens up new perspectives for the industrial and commercial utilization of these technologies.
Collapse
Affiliation(s)
- Janaina Soares Santos
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Patrícia dos Santos Araújo
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Yasmin Bastos Pissolitto
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Paula Prenholatto Lopes
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Anna Paulla Simon
- Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Via do Conhecimento Km 1, Pato Branco 85503-390, Brazil; (A.P.S.); (M.d.S.S.)
- Chemistry Graduate Program, Campus CEDETEG, Midwestern Parana State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, Guarapuava 85040-167, Brazil
| | - Mariana de Souza Sikora
- Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Via do Conhecimento Km 1, Pato Branco 85503-390, Brazil; (A.P.S.); (M.d.S.S.)
- Chemistry Graduate Program, Campus CEDETEG, Midwestern Parana State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, Guarapuava 85040-167, Brazil
| | - Francisco Trivinho-Strixino
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| |
Collapse
|
8
|
Chatterjee S, Bhanja P, Ghosh D, Kumar P, Kanti Das S, Dalapati S, Bhaumik A. Metformin-Templated Nanoporous ZnO and Covalent Organic Framework Heterojunction Photoanode for Photoelectrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:408-416. [PMID: 33052003 DOI: 10.1002/cssc.202002136] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Photoelectrochemical water-splitting offers unique opportunity in the utilization of abundant solar light energy and water resources to produce hydrogen (renewable energy) and oxygen (clean environment) in the presence of a semiconductor photoanode. Zinc oxide (ZnO), a wide bandgap semiconductor is found to crystallize predominantly in the hexagonal wurtzite phase. Herein, we first report a new crystalline triclinic phase of ZnO by using N-rich antidiabetic drug metformin as a template via hydrothermal synthesis with self-assembled nanorod-like particle morphology. We have fabricated a heterojunction nanocomposite charge carrier photoanode by coupling this porous ZnO with a covalent organic framework, which displayed highly enhanced photocurrent density of 0.62 mA/cm2 at 0.2 V vs. RHE in photoelectrochemical water oxidation and excellent photon-to-current conversion efficiency at near-neutral pH vis-à-vis bulk ZnO. This enhancement of the photocurrent for the porous ZnO/COF nanocomposite material over the corresponding bulk ZnO could be attributed to the visible light energy absorption by COF and subsequent efficient charge-carrier mobility via porous ZnO surface.
Collapse
Affiliation(s)
- Sauvik Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Piyali Bhanja
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Dibyendu Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Praveen Kumar
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sasanka Dalapati
- School of Technology, Department of Materials Science, Central University of Tamil Nadu (CUTN), Neelakudi, Thiruvarur, Tamil Nadu, 610005, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
9
|
Yang X, Xu J, Chen X, Lei Y, Wang L, Cheng S, Li Y, Lu Y, Zhu Y, Chen N. Preparation and Characterization of Porous Carbon from Mixed Leaves for
High‐Performance
Supercapacitors. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaoxiang Yang
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Jie Xu
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Xin Chen
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Yuli Lei
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Lingling Wang
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Siyu Cheng
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Yan Li
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Yuxuan Lu
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Yupeng Zhu
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Na Chen
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| |
Collapse
|
10
|
Sajedi-Moghaddam A, Rahmanian E, Naseri N. Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34487-34504. [PMID: 32628006 DOI: 10.1021/acsami.0c07689] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inkjet-printing (IJP) technology is recognized as a significant breakthrough in manufacturing high-performance electrochemical energy storage systems. In comparison to conventional fabrication protocols, this printing technique offers various advantages, such as contact-less high-resolution patterning capability; low-cost, controlled material deposition; process simplicity; and compatibility with a variety of substrates. Due to these outstanding merits, significant research efforts have been devoted to utilizing IJP technology in developing electrochemical energy storage devices, particularly in supercapacitors (SCs). These attempts have focused on fabricating the key components of SCs, including electrode, electrolyte, and current collector, through rational formulation and patterning of functional inks. In an attempt to further expand the material design strategy and accelerate technology development, it is urgent and essential to obtain an in-depth insight into the recent developments of inkjet-printed SCs. Toward this aim, first, a general introduction to the fundamental principles of IJP technology is provided. After that, the latest achievements in IJP of capacitive energy storage devices are systematically summarized and discussed with a particular emphasis on the design of printable functional materials, the printing process, and capacitive performance of inkjet-printed SCs. To close, existing challenges and future research trends for developing state-of-the-art inkjet-printed SCs are proposed.
Collapse
Affiliation(s)
- Ali Sajedi-Moghaddam
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Islamic Republic of Iran
| | - Elham Rahmanian
- Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Islamic Republic of Iran
| | - Naimeh Naseri
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Islamic Republic of Iran
| |
Collapse
|
11
|
Lai CW, Samsudin NA, Low FW, Abd Samad NA, Lau KS, Chou PM, Tiong SK, Amin N. Influence of Temperature Reaction for the CdSe-TiO 2 Nanotube Thin Film Formation via Chemical Bath Deposition in Improving the Photoelectrochemical Activity. MATERIALS 2020; 13:ma13112533. [PMID: 32503128 PMCID: PMC7321465 DOI: 10.3390/ma13112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/24/2022]
Abstract
In this present work, we report the deposition of cadmium selenide (CdSe) particles on titanium dioxide (TiO2) nanotube thin films, using the chemical bath deposition (CBD) method at low deposition temperatures ranging from 20 to 60 °C. The deposition temperature had an influence on the overall CdSe–TiO2 nanotube thin film morphologies, chemical composition, phase transition, and optical properties, which, in turn, influenced the photoelectrochemical performance of the samples that were investigated. All samples showed the presence of CdSe particles in the TiO2 nanotube thin film lattice structures with the cubic phase CdSe compound. The amount of CdSe loading on the TiO2 nanotube thin films were increased and tended to form agglomerates as a function of deposition temperature. Interestingly, a significant enhancement in photocurrent density was observed for the CdSe–TiO2 nanotube thin films deposited at 20 °C with a photocurrent density of 1.70 mA cm−2, which was 17% higher than the bare TiO2 nanotube thin films. This sample showed a clear surface morphology without any clogged nanotubes, leading to better ion diffusion, and, thus, an enhanced photocurrent density. Despite having the least CdSe loading on the TiO2 nanotube thin films, the CdSe–TiO2 nanotube thin films deposited at 20 °C showed the highest photocurrent density, which confirmed that a small amount of CdSe is enough to enhance the photoelectrochemical performance of the sample.
Collapse
Affiliation(s)
- Chin Wei Lai
- Level 3, Block A, Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.A.S.); (K.S.L.)
- Correspondence: (C.W.L.); (N.A.S.); (F.W.L.); Tel.: +603-79676959 (ext. 2925) (C.W.L.)
| | - Nurul Asma Samsudin
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (The Energy University), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (S.K.T.); (N.A.)
- Correspondence: (C.W.L.); (N.A.S.); (F.W.L.); Tel.: +603-79676959 (ext. 2925) (C.W.L.)
| | - Foo Wah Low
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (The Energy University), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (S.K.T.); (N.A.)
- Correspondence: (C.W.L.); (N.A.S.); (F.W.L.); Tel.: +603-79676959 (ext. 2925) (C.W.L.)
| | - Nur Azimah Abd Samad
- Level 3, Block A, Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.A.S.); (K.S.L.)
| | - Kung Shiuh Lau
- Level 3, Block A, Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.A.S.); (K.S.L.)
| | - Pui May Chou
- School of Engineering, Faculty of Built Environment Engineering, Technology & Design, Taylor’s Lakeside Campus, No. 1, Jalan Taylors, Subang Jaya 47500, Malaysia;
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (The Energy University), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (S.K.T.); (N.A.)
| | - Nowshad Amin
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (The Energy University), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (S.K.T.); (N.A.)
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (National University of Malaysia), Bangi 43600, Malaysia
| |
Collapse
|
12
|
Eskandari M, García CA, Buceta D, Malekfar R, Taboada P. NiCo2O4/MWCNT/PANI coral-like nanostructured composite for electrochemical energy-storage applications. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|