1
|
Thammanatpong K, Surawatanawong P. Mechanisms of hydrogen evolution by six-coordinate cobalt complexes: a density functional study on the role of a redox-active pyridinyl-substituted diaminotriazine benzamidine ligand as a proton relay. Dalton Trans 2024; 53:6006-6019. [PMID: 38469898 DOI: 10.1039/d3dt03960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The hydrogen evolution reaction is an important process for energy storage. The six-coordinate cobalt complex [CoIII(L1-)(LH)]2+ (LH = N-(4-amino-6-(pyridin-2-yl)-1,3,5-triazin-2-yl)benzamidine) was found to catalyze photocatalytic hydrogen evolution. In this work, we performed density functional calculations to obtain the reduction potentials and the proton-transfer free energy of possible intermediates to determine the preferred pathways for proton reduction. The mechanism involves the metal-based reduction of Co(III) to Co(II) before the protonation at the amidinate N on the pyridinyl-substituted diaminotriazine benzamidinate ligand L1- to form [CoII(LH)(LH)]2+. Essentially, the subsequent electron transfer is not metal-based reduction, but rather ligand-based reduction to form [CoII(LH)(LH˙1-)]1+. Through a proton-coupled electron transfer process, the cobalt hydride [CoIIH(LH)(LH2˙)]1+ is formed as the key intermediate for hydrogen evolution. As the cobalt hydride complex is coordinatively saturated, a structural change is required when the hydride on Co is coupled with the proton on pyridine. Notably, the redox-active nature of the ligand results in the low acidity of the protonated pyridine moiety of LH2˙, which impedes its function as a proton relay. Our findings suggest that separating the proton relay fragment from the electron reservoir fragment of the redox-active ligand is preferred for fully utilizing both features in catalytic H2 evolution.
Collapse
Affiliation(s)
- Kittimeth Thammanatpong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Center of Sustainable Energy and Green Materials, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
2
|
Torres-Méndez C, Axelsson M, Tian H. Small Organic Molecular Electrocatalysts for Fuels Production. Angew Chem Int Ed Engl 2024; 63:e202312879. [PMID: 37905977 DOI: 10.1002/anie.202312879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
In recent years, heterocyclic organic compounds have been explored as molecular electrocatalysts in relevant reactions for energy conversion and storage. Merging mimetics of biological systems that perform hydride transfer with rational synthetic chemical design has opened many opportunities for organic molecules to be tuned at the atomic level conferring them interesting reactivities. These molecular electrocatalysts represent an alternative to traditional metallic materials and metal complexes employed for water oxidation, hydrogen production, and carbon dioxide reduction. This minireview describes recent reports concerning design, catalytic activity and the mechanism of synthetic molecular electrocatalysts towards solar fuels production.
Collapse
Affiliation(s)
- Carlos Torres-Méndez
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Martin Axelsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Haining Tian
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| |
Collapse
|
3
|
Droghetti F, Amati A, Ruggi A, Natali M. Bioinspired motifs in proton and CO 2 reduction with 3d-metal polypyridine complexes. Chem Commun (Camb) 2024; 60:658-673. [PMID: 38117176 DOI: 10.1039/d3cc05156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The synthesis of active and efficient catalysts for solar fuel generation is nowadays of high relevance for the scientific community, but at the same time poses great challenges. Critical requirements are mainly associated with the kinetic barriers due to the multi-proton and multi-electron nature of the hydrogen evolution reaction (HER) and the CO2 reduction reaction (CO2RR) as well as to selectivity issues. In this regard, natural enzymes can be a source of inspiration for the design of effective and selective catalysts to target such fundamental reactions. In this Feature Article we review some recent works on molecular catalysts for both the HER and the CO2RR performed in our labs and other research teams which mainly address (i) the role of redox non-innocent ligands, to lower the overpotential for catalysis and control the selectivity, and (ii) the role of internal relays, to assist formation of catalytic intermediates via intramolecular routes. The selected exemplars have been chosen to emphasize that, although the molecular structures and the synthetic motifs are different from those of the active sites of natural enzymes, many affinities in terms of catalytic mechanism and functionality are instead present, which account for the observed remarkable performances under operative conditions. The data discussed herein thus demonstrate the great potential and the privileged role of molecular catalysts towards the design and construction of hybrid photochemical systems for solar energy conversion into fuels.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Agnese Amati
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Albert Ruggi
- Department of Chemistry, University of Fribourg, Chemin de Musée 9, CH-1700 Fribourg, Switzerland.
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
4
|
Muniz CN, Archer CA, Applebaum JS, Alagaratnam A, Schaab J, Djurovich PI, Thompson ME. Two-Coordinate Coinage Metal Complexes as Solar Photosensitizers. J Am Chem Soc 2023. [PMID: 37319428 DOI: 10.1021/jacs.3c02825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Generating sustainable fuel from sunlight plays an important role in meeting the energy demands of the modern age. Herein, we report two-coordinate carbene-metal-amide (cMa, M = Cu(I) and Au(I)) complexes that can be used as sensitizers to promote the light-driven reduction of water to hydrogen. The cMa complexes studied here absorb visible photons (εvis > 103 M-1 cm-1), maintain long excited-state lifetimes (τ ∼ 0.2-1 μs), and perform stable photoinduced charge transfer to a target substrate with high photoreducing potential (E+/* up to -2.33 V vs Fc+/0 based on a Rehm-Weller analysis). We pair these coinage metal complexes with a cobalt-glyoxime electrocatalyst to photocatalytically generate hydrogen and compare the performance of the copper- and gold-based cMa complexes. We also find that the two-coordinate complexes herein can perform photodriven hydrogen production from water without the addition of the cobalt-glyoxime electrocatalyst. In this "catalyst-free" system, the cMa sensitizer partially decomposes to give metal nanoparticles that catalyze water reduction. This work identifies two-coordinate coinage metal complexes as promising abundant metal, solar fuel photosensitizers that offer exceptional tunability and photoredox properties.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Claire A Archer
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jack S Applebaum
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anushan Alagaratnam
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Stoumpidi A, Trapali A, Poisson M, Barrozo A, Bertaina S, Orio M, Charalambidis G, Coutsolelos AG. Highly Efficient Light‐Driven CO
2
to CO Reduction by an Appropriately Decorated Iron Porphyrin Molecular Catalyst. ChemCatChem 2023. [DOI: 10.1002/cctc.202200856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aspasia Stoumpidi
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus 70013 Heraklion Crete Greece
| | - Adelais Trapali
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus 70013 Heraklion Crete Greece
| | - Marie Poisson
- Aix Marseille Université CNRS Centrale Marseille iSm2 13397 Marseille France
| | - Alexandre Barrozo
- Aix Marseille Université CNRS Centrale Marseille iSm2 13397 Marseille France
| | - Sylvain Bertaina
- Aix-Marseille Université CNRS IM2NP UMR 7334 13397 Marseille France
| | - Maylis Orio
- Aix Marseille Université CNRS Centrale Marseille iSm2 13397 Marseille France
| | - Georgios Charalambidis
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus 70013 Heraklion Crete Greece
| | - Athanassios G. Coutsolelos
- Department of Chemistry University of Crete Laboratory of Bioinorganic Chemistry Voutes Campus 70013 Heraklion Crete Greece
| |
Collapse
|
6
|
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Yang G, Cen JH, Lan J, Li MY, Zhan X, Yuan GQ, Liu HY. Non-Metallic Phosphorus Corrole as Efficient Electrocatalyst in Hydrogen Evolution Reaction. CHEMSUSCHEM 2022; 15:e202201553. [PMID: 36121337 DOI: 10.1002/cssc.202201553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The economical consideration of using an electrocatalyst in energy-related field, composed of non-precious/sustainable elements is quite noteworthy. In this work, the phosphorus(V) complex of tris-(pentafluorophenyl)corrole [(TPFC)PV (OH)2 ] was reported as electrocatalyst for the hydrogen evolution reaction (HER). The electrochemical studies revealed that the HER experienced a ECEC pathway (E: electron transfer step, C: chemical step), and the possible intermediate [PV ]-H species was suggested. (TPFC)PV (OH)2 displayed excellent HER activity in dimethylformamide (DMF) with trifluoroacetic acid (TFA) as the proton source, and the turnover frequency (TOF) reached 31.75 s-1 at an overpotential of 900 mV. Interestingly, the HER electrocatalytic performance remained extraordinary even applying water as a proton source in acetonitrile/water (v/v=2 : 3), with a TOF of 18.40 mol H 2 ${{_{{\rm H}{_{2}}}}}$ molcat -1 h-1 at an overpotential of 900 mV.
Collapse
Affiliation(s)
- Gang Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Fuel Cell Technology & School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Jing-He Cen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Fuel Cell Technology & School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Jian Lan
- Department of Chemistry, Guangdong Provincial Key Laboratory of Fuel Cell Technology & School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Meng-Yuan Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Fuel Cell Technology & School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xuan Zhan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 518172, Shenzhen, P. R. China
| | - Gao-Qing Yuan
- Department of Chemistry, Guangdong Provincial Key Laboratory of Fuel Cell Technology & School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Hai-Yang Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Fuel Cell Technology & School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
8
|
Williams CK, McCarver GA, Chaturvedi A, Sinha S, Ang M, Vogiatzis KD, Jiang J“J. Electrocatalytic Hydrogen Evolution Using A Molecular Antimony Complex under Aqueous Conditions: An Experimental and Computational Study on Main‐Group Element Catalysis. Chemistry 2022; 28:e202201323. [DOI: 10.1002/chem.202201323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Caroline K. Williams
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Gavin A. McCarver
- Department of Chemistry University of Tennessee Knoxville Tennessee 37996-1600 USA
| | - Ashwin Chaturvedi
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Soumalya Sinha
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Marcus Ang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | | | - Jianbing “Jimmy” Jiang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| |
Collapse
|
9
|
Chaturvedi A, McCarver GA, Sinha S, Hix EG, Vogiatzis KD, Jiang J. A PEGylated Tin Porphyrin Complex for Electrocatalytic Proton Reduction: Mechanistic Insights into Main‐Group‐Element Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206325. [DOI: 10.1002/anie.202206325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ashwin Chaturvedi
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Gavin A. McCarver
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | - Soumalya Sinha
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Elijah G. Hix
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | | | - Jianbing Jiang
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
10
|
Chaturvedi A, McCarver GA, Sinha S, Hix EG, Vogiatzis KD, Jiang JJ. A PEGylated Tin‐Porphyrin Complex for Electrocatalytic Proton Reduction: Mechanistic Insights into Main‐Group Element Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashwin Chaturvedi
- University of Cincinnati Chemistry 312 College Dr. 45221 Cincinnati UNITED STATES
| | - Gavin A McCarver
- UT Knoxville: The University of Tennessee Knoxville Chemistry UNITED STATES
| | | | - Elijah G Hix
- UT Knoxville: The University of Tennessee Knoxville Chemistry UNITED STATES
| | - Konstantinos D Vogiatzis
- UT Knoxville: The University of Tennessee Knoxville Chemistry Buehler Hall1420 Circle Dr. 37996 Knoxville UNITED STATES
| | - Jianbing Jimmy Jiang
- University of Cincinnati Chemistry 312 College Dr. 45221 Cincinnati UNITED STATES
| |
Collapse
|
11
|
Gorantla KR, Mallik BS. Catalytic Mechanism of Competing Proton Transfer Events from Water and Acetic Acid by [Co II(bpbH 2)Cl 2] for Water Splitting Processes. J Phys Chem A 2022; 126:1321-1328. [PMID: 35172100 DOI: 10.1021/acs.jpca.1c07353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We performed first principles simulations to explore the water reduction process of the cobalt complex [CoII(bpbH2)Cl2], where bpbH2 = N,N'-bis(2'-pyridine carboxamide)-1,2-benzene. We considered the sequence steps of electron reduction followed by the proton addition process to observe the hydrogen evolution process. An experimental study of the catalyst showed that the increase in the acetic acid concentration triggers catalytic current and reduction of Co(II) to Co(I), and protonation occurred, yielding a Co(III)-H intermediate. Therefore, we used water and acetic acid as the proton sources. We compare the proton transfer kinetics from both the water and acetic acid. The reduction potentials and proton transfer kinetics from water or acetic acid to the reaction center were studied in a DMF solvent through the implicit solvent model. The first proton transfer from the acetic acid is more favorable, forming a CoIII-H complex and further reducing to CoII-H. The second proton transfer from water to the CoII-H moiety requires less free energy than acetic acid and is the rate-limiting step. The nature of the reduction process is also examined through the charge analysis, which reveals that the ligand becomes softer due to the C═O groups.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
12
|
Lin X, Qin P, Ni S, Yang T, Li M, Dang L. Priority of Mixed Diamine Ligands in Cobalt Dithiolene Complex-Catalyzed H 2 Evolution: A Theoretical Study. Inorg Chem 2021; 60:6688-6695. [PMID: 33861584 DOI: 10.1021/acs.inorgchem.1c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox non-innocent metal dithiolene or diamine complexes are potential alternative catalysts in hydrogen evolution reaction and have been incorporated into 2D metal-organic frameworks to obtain unexpected electrocatalytic activity. According to an experimental study, Co-bis(dithiolene), Co-bis(diamine), and Co-dithiolene-diamine portions are considered as active sites where the generation of H2 occurs and a diamine ligand is necessary for high catalytic efficiency. We are interested in the difference between these catalytic active sites, and mechanistic studies on extracted Co-bis(dithiolene), Co-bis(diamine), and Co-dithiolene-diamine complex-catalyzed hydrogen evolution reactions are carried out by using density functional methods. Our calculated results indicate that the priority of ligand mixed complexes resulted from the readily occurring protonation of diamine ligands and large electron affinity of dithiolene ligands as well as the lowest overall barrier for H2 evolution.
Collapse
Affiliation(s)
- Xiuhua Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Peng Qin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
13
|
Drosou M, Zarkadoulas A, Bethanis K, Mitsopoulou CA. Structural modifications on nickel dithiolene complexes lead to increased metal participation in the electrocatalytic hydrogen evolution mechanism. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1918339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Zarkadoulas
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
15
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
16
|
Joseph J, Sivasankarapillai VS, Nikazar S, Shanawaz MS, Rahdar A, Lin H, Kyzas GZ. Borophene and Boron Fullerene Materials in Hydrogen Storage: Opportunities and Challenges. CHEMSUSCHEM 2020; 13:3754-3765. [PMID: 32338453 DOI: 10.1002/cssc.202000782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Two-dimensional materials have led to a leap forward in materials science research, especially in the fields of energy conversion and storage. Borophene and its spherical counterpart boron fullerene represent emerging materials that have attracted much attention in the whole area of advanced energy materials and technologies. Owing to their prominent features, such as electronic environment and geometry, borophene and boron fullerene have been used in versatile applications, such as supercapacitors, superconductors, anode materials for photochemical water splitting, and biosensors. Herein, one of the most promising applications/areas of hydrogen storage is discussed. Boron fullerenes have been considered and discussed for hydrogen-storage applications, and recently borophene was also included in the list of materials with promising hydrogen-storage properties. Studies focus mainly on doped borophene systems over pristine borophene due to enhanced features available upon decoration with metal atoms. This Review introduces very recent progress and novel paradigms with respect to both borophene derivatives and boron fullerene based systems reported for hydrogen storage, with a focus on the synthesis, physiochemical properties, hydrogen-storage mechanism, and practical applications.
Collapse
Affiliation(s)
- Jithu Joseph
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, 682022, India
| | | | - Sohrab Nikazar
- Chemical Engineering Faculty, Engineering College, University of Tehran, P.O. Box 14155-6455, Tehran, 14155-6455, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 538-98615, Iran
| | - Han Lin
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece
| |
Collapse
|
17
|
Sampath P, Brijesh, Reddy KR, Reddy CV, Shetti NP, Kulkarni RV, Raghu AV. Biohydrogen Production from Organic Waste – A Review. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900400] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P. Sampath
- Dayananda Sagar College of EngineeringDepartment of Chemical Engineering 560078 Bengaluru Karnataka India
| | - Brijesh
- Ramaiah Institute of TechnologyDepartment of Chemical Engineering 560054 Bengaluru Karnataka India
| | - Kakarla Raghava Reddy
- The University of SydneySchool of Chemical and Biomolecular Engineering NSW 2006 Sydney Australia
| | - C. Venkata Reddy
- Yeungnam UniversitySchool of Mechanical Engineering 712-749 Gyeongsan South Korea
| | - Nagaraj P. Shetti
- K.L.E Institute of TechnologyDepartment of Chemistry 580030 Gokul, Hubballi Karnataka India
| | - Raghavendra V. Kulkarni
- BLDEA's SSM College of Pharmacy and Research CentreDepartment of Pharmaceutics 586 103 Karnataka Vijayapur India
| | - Anjanapura V. Raghu
- JAIN Deemed-to-be UniversityDepartment of Basic SciencesCenter for Emerging Technology (CET)School of Chemistry 562112 Karnataka Bangalore India
| |
Collapse
|
18
|
Papanikolaou MG, Elliott A, McAllister J, Gallos JK, Keramidas AD, Kabanos TA, Sproules S, Miras HN. Electrocatalytic hydrogen production by dinuclear cobalt(ii) compounds containing redox-active diamidate ligands: a combined experimental and theoretical study. Dalton Trans 2020; 49:15718-15730. [PMID: 33146215 DOI: 10.1039/d0dt02617d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The chiral dicobalt(ii) complex [CoII2(μ2-L)2] (1) (H2L = N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide) and its tert-butyl analogue [CoII2(μ2-LBu)2] (2) were structurally characterized and their catalytic evolution of H2 was investigated.
Collapse
Affiliation(s)
| | | | - James McAllister
- West CHEM
- School of Chemistry
- University of Glasgow
- Glasgow G12 8QQ
- UK
| | - John K. Gallos
- Department of Chemistry
- Aristotle University of Thessaloniki
- Thessaloniki GR 541 24
- Greece
| | | | | | - Stephen Sproules
- West CHEM
- School of Chemistry
- University of Glasgow
- Glasgow G12 8QQ
- UK
| | | |
Collapse
|
19
|
Papadakis M, Barrozo A, Straistari T, Queyriaux N, Putri A, Fize J, Giorgi M, Réglier M, Massin J, Hardré R, Orio M. Ligand-based electronic effects on the electrocatalytic hydrogen production by thiosemicarbazone nickel complexes. Dalton Trans 2020; 49:5064-5073. [DOI: 10.1039/c9dt04775a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work reports on the synthesis and characterization of a series of mononuclear thiosemicarbazone nickel complexes that display significant catalytic activity for hydrogen production in DMF using trifluoroacetic acid as the proton source.
Collapse
Affiliation(s)
| | | | | | | | - Anisa Putri
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Jennifer Fize
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | | | | | - Julien Massin
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Renaud Hardré
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Maylis Orio
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| |
Collapse
|
20
|
Exner KS. Electrolyte Engineering as a Key Strategy Towards a Sustainable Energy Scenario? ChemElectroChem 2019. [DOI: 10.1002/celc.201902009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai S. Exner
- Sofia University, Faculty of Chemistry and PharmacyDepartment of Physical Chemistry 1 James Bourchier Avenue 1164 Sofia Bulgaria
| |
Collapse
|