1
|
Chao Y, Jia S, Li J, Chen G, Liu L, Tang F, Zhu J, Wang C, Cui X. A dual heterostructure enables the stabilization of 1T-rich MoSe 2 for enhanced storage of sodium ions. Chem Sci 2024; 15:11134-11144. [PMID: 39027283 PMCID: PMC11253150 DOI: 10.1039/d4sc02400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
Electron injection effectively induces the formation of a 1T-rich phase to address the low conductivity of MoSe2. Nevertheless, overcoming the inherent metastability of the 1T phase (particularly during the conversion reactions that entail the decomposition-reconstruction of MoSe2 and volume expansion) remains a challenge. Guided by DFT results, we designed a composite with bimetal selenides-based heterostructures anchored on reduced graphene oxide (rGO) nanosheets (G-Cu2Se@MoSe2) to obtain stabilized 1T-rich MoSe2 and enhanced ion transfer. The construction of 1T-rich MoSe2 and built-in electric fields (BiEF) through electron transfer at the heterointerfaces were realized. Moreover, the rGO-metal selenides heterostructures with in situ-formed interfacial bonds could facilitate the reconstruction of the 1T-rich MoSe2-involved heterostructure and interfacial BiEF. Such a dual heterostructure endowed G-Cu2Se@MoSe2 with an excellent rate capability with a capacity of 288 mA h g-1 at 50 A g-1 and superior cycling stability with a capacity retention ratio of 89.6% (291 mA h g-1) after 15 000 cycles at 10 A g-1. Insights into the functional mechanism and structural evolution of the 1T MoSe2-involved dual heterostructure from this work may provide guidelines for the development of MoSe2 and phase-engineering strategies for other polymorphistic materials.
Collapse
Affiliation(s)
- Yunfeng Chao
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 China
| | - Shenghui Jia
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 China
| | - Jinzhao Li
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 China
| | - Guohui Chen
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 China
| | - Lu Liu
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 China
| | - Fei Tang
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 China
| | - Jianhua Zhu
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong Innovation Campus North Wollongong NSW 2500 Australia
| | - Xinwei Cui
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
2
|
Liu L, Li B, Wang J, Du H, Du Z, Ai W. Molecular Intercalation Enables Phase Transition of MoSe 2 for Durable Na-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309647. [PMID: 38240559 DOI: 10.1002/smll.202309647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Indexed: 06/13/2024]
Abstract
1T-MoSe2 is recognized as a promising anode material for sodium-ion batteries, thanks to its excellent electrical conductivity and large interlayer distance. However, its inherent thermodynamic instability often presents unparalleled challenges in phase control and stabilization. Here, a molecular intercalation strategy is developed to synthesize thermally stable 1T-rich MoSe2, covalently bonded to an intercalated carbon layer (1TR/2H-MoSe2@C). Density functional theory calculations uncover that the introduced ethylene glycol molecules not only serve as electron donors, inducing a reorganization of Mo 4d orbitals, but also as sacrificial guest materials that generate a conductive carbon layer. Furthermore, the C─Se/C─O─Mo bonds encourage strong interfacial electronic coupling, and the carbon layer prevents the restacking of MoSe2, regulating the maximum 1T phase to an impressive 80.3%. Consequently, the 1TR/2H-MoSe2@C exhibits an extraordinary rate capacity of 326 mAh g-1 at 5 A g-1 and maintains a long-term cycle stability up to 1500 cycles, with a capacity of 365 mAh g-1 at 2 A g-1. Additionally, the full cell delivers an appealing energy output of 194 Wh kg-1 at 208 W kg-1, with a capacity retention of 87.3% over 200 cycles. These findings contribute valuable insights toward the development of innovative transition metal dichalcogenides for next-generation energy storage technologies.
Collapse
Affiliation(s)
- Lei Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Boxin Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jiaqi Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongfang Du
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
3
|
Chao Y, Han Y, Chen Z, Chu D, Xu Q, Wallace G, Wang C. Multiscale Structural Design of 2D Nanomaterials-based Flexible Electrodes for Wearable Energy Storage Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305558. [PMID: 38115755 PMCID: PMC10916616 DOI: 10.1002/advs.202305558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Indexed: 12/21/2023]
Abstract
2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.
Collapse
Affiliation(s)
- Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Yan Han
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Zhiqi Chen
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Dewei Chu
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
| | - Gordon Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Caiyun Wang
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
4
|
Liu Z, Zhang H, Zhang S, Li S, Li Z. Preparation of MoP-based quasi-two-dimensional belt-like composite fibers and its performance modulation for sodium/potassium ion storage. J Colloid Interface Sci 2024; 655:357-363. [PMID: 37948809 DOI: 10.1016/j.jcis.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Beyond round nanofibers, electrospinning method is able to fabricate thin fibers with various cross-sectional shapes. In this work, using phosphomolybdic acid to trigger the polymerization reaction of pyrrole with addition of tin salt for the filler of carbon fibers, we prepared quasi-two-dimensional thick belt-like fibers through single spinneret electrospinning. The side-by-side welding nanofiber bundles with dog-bone-shaped cross-section improved the connection between fibers, endowing the fiber films with some flexibility and enabling it to be used as freestanding electrode. Employed as anode for sodium/potassium ion storage, the carbon fiber encapsulated MoP/SnO2 material exhibited promising electrochemical performance. Controlling the collection process of electrospinning, the electrode mass loading can be increased to 10 mg cm-2. Combined with surface selenizing modification, the performance of as-prepared MoP/SnO2/MoSe2 was further improved, which exhibited areal capacity about 1.5 mAh cm-2 as anode for sodium/potassium ion storage with mass loading of 8-9 mg cm-2.
Collapse
Affiliation(s)
- Zhenjiang Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiyan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Shangshang Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengkai Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenghui Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
5
|
He H, Zhang H, Huang D, Kuang W, Li X, Hao J, Guo Z, Zhang C. Harnessing Plasma-Assisted Doping Engineering to Stabilize Metallic Phase MoSe 2 for Fast and Durable Sodium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200397. [PMID: 35137451 DOI: 10.1002/adma.202200397] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Metallic-phase selenide molybdenum (1T-MoSe2 ) has become a rising star for sodium storage in comparison with its semiconductor phase (2H-MoSe2 ) owing to the intrinsic metallic electronic conductivity and unimpeded Na+ diffusion structure. However, the thermodynamically unstable nature of 1T phase renders it an unprecedented challenge to realize its phase control and stabilization. Herein, a plasma-assisted P-doping-triggered phase-transition engineering is proposed to synthesize stabilized P-doped 1T phase MoSe2 nanoflower composites (P-1T-MoSe2 NFs). Mechanism analysis reveals significantly decreased phase-transition energy barriers of the plasma-induced Se-vacancy-rich MoSe2 from 2H to 1T owing to its low crystallinity and reduced structure stability. The vacancy-rich structure promotes highly concentrated P doping, which manipulates the electronic structure of the MoSe2 and urges its phase transition, acquiring a high transition efficiency of 91% accompanied with ultrahigh phase stability. As a result, the P-1T-MoSe2 NFs deliver an exceptional high reversible capacity of 510.8 mAh g-1 at 50 mA g-1 with no capacity fading over 1000 cycles at 5000 mA g-1 for sodium storage. The underlying mechanism of this phase-transition engineering verified by profound analysis provides informative guide for designing advanced materials for next-generation energy-storage systems.
Collapse
Affiliation(s)
- Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hehe Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dan Huang
- Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wei Kuang
- Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiaolong Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Junnan Hao
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Li Y, Wang M, Yi Y, Lu C, Dou S, Sun J. Metallic Transition Metal Dichalcogenides of Group VIB: Preparation, Stabilization, and Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005573. [PMID: 33734605 DOI: 10.1002/smll.202005573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Layered transition metal dichalcogenides (TMDs) of group VIB have been widely used in the realms of energy storage and conversions. Along with the existence of semiconducting states, their metallic phases have recently attracted numerous attentions owing to their fascinating physical and chemical properties. Many efforts have been devoted to obtain metallic TMDs with high purity and yield. Nevertheless, such metallic phase is thermodynamically metastable and tends to convert into semiconducting phase, which necessitates the exploration over effective strategies to ensure the stability. In this review, typical fabrication routes are introduced and those critical factors during preparation are elaborately discussed. Moreover, the stabilized strategies are summarized with concrete examples highlighting the key mechanisms toward efficient stabilization. Finally, emerging energy applications are overviewed. This review presents comprehensive research status of metallic group VIB TMDs, aiming to facilitate further scientific investigations and promote future practical applications in the fields of energy storage and conversion.
Collapse
Affiliation(s)
- Yihui Li
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Menglei Wang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Yuyang Yi
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| | - Chen Lu
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China
| |
Collapse
|
7
|
Liu L, Xu J, Sun J, He S, Wang K, Chen Y, Dou S, Du Z, Du H, Ai W, Huang W. A stable and ultrafast K ion storage anode based on phase-engineered MoSe 2. Chem Commun (Camb) 2021; 57:3885-3888. [PMID: 33871503 DOI: 10.1039/d1cc00341k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potassium-ion batteries (PIBs) are attracting increasing attention due to the abundance of K resources, but the sluggish kinetics and inferior cycling stability of anodes still hinder their application. Herein, we present a hybrid 1T/2H phase MoSe2 anode, which shows noticeable pseudocapacitive response and fast kinetics for K storage. Correspondingly, superior electrochemical performances including a high reversible capacity of 440 mA h g-1 after 100 cycles at 0.1 A g-1 and superb rate capacity of 211 mA h g-1 at 20.0 A g-1 are achieved. We believe this work may shed light on the phase engineering of transition metal compounds for rapid charging PIBs.
Collapse
Affiliation(s)
- Lei Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jie Xu
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University, Tianjin 300072, P. R. China.
| | - Jinmeng Sun
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Song He
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yanan Chen
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University, Tianjin 300072, P. R. China.
| | - Shuming Dou
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University, Tianjin 300072, P. R. China.
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Hongfang Du
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China and Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
8
|
Li Y, Han M, Zhou Z, Xia X, Chen Q, Chen M. Topological Insulator‐Assisted MoSe
2
/Bi
2
Se
3
Heterostructure: Achieving Fast Reaction Kinetics Toward High Rate Sodium‐Ion Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202001409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Li
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Manshu Han
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Zhihao Zhou
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials Key Laboratory of Adv. Mater. and Applications for Batteries of Zhejiang Province Zhejiang University Hangzhou 310027 P. R. China
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| |
Collapse
|
9
|
Shen Y, Deng S, Liu P, Zhang Y, Li Y, Tong X, Shen H, Liu Q, Pan G, Zhang L, Wang X, Xia X, Tu J. Anchoring SnS 2 on TiC/C Backbone to Promote Sodium Ion Storage by Phosphate Ion Doping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004072. [PMID: 32893499 DOI: 10.1002/smll.202004072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Tin disulfide (SnS2 ) shows promising properties toward sodium ion storage with high capacity, but its cycle life and high rate capability are still undermined as a result of poor reaction kinetics and unstable structure. In this work, phosphate ion (PO4 3- )-doped SnS2 (P-SnS2 ) nanoflake arrays on conductive TiC/C backbone are reported to form high-quality P-SnS2 @TiC/C arrays via a hydrothermal-chemical vapor deposition method. By virtue of the synergistic effect between PO4 3- doping and conductive network of TiC/C arrays, enhanced electronic conductivity and enlarged interlayer spacing are realized in the designed P-SnS2 @TiC/C arrays. Moreover, the introduced PO4 3- can result in favorable intercalation/deintercalation of Na+ and accelerate electrochemical reaction kinetics. Notably, lower bandgap and enhanced electronic conductivity owing to the introduction of PO4 3- are demonstrated by density function theory calculations and UV-visible absorption spectra. In view of these positive factors above, the P-SnS2 @TiC/C electrode delivers a high capacity of 1293.5 mAh g-1 at 0.1 A g-1 and exhibits good rate capability (476.7 mAh g-1 at 5 A g-1 ), much better than the SnS2 @TiC/C counterpart. This work may trigger new enthusiasm on construction of advanced metal sulfide electrodes for application in rechargeable alkali ion batteries.
Collapse
Affiliation(s)
- Yanbin Shen
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shengjue Deng
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ping Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yan Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yahao Li
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xili Tong
- State Key Laboratory of Coal Conversation, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Hong Shen
- Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Guoxiang Pan
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Lingjie Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|