1
|
Wang J, Liu Q, Cao S, Zhu H, Wang Y. Boosting sodium-ion battery performance with binary metal-doped Na 3V 2(PO 4) 2F 3 cathodes. J Colloid Interface Sci 2024; 665:1043-1053. [PMID: 38579387 DOI: 10.1016/j.jcis.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Na3V2(PO4)2F3 (NVPF), recognized for its Na superionic conductor architecture, emerges as a promising candidate among polyanion-type cathodes for sodium ion batteries (SIBs). However, its adoption in practical applications faces obstacles due to its inherently low electronic conductivity. To address this challenge, we employ a binary co-doped strategy to design Na3.3K0.2V1.5Mg0.5(PO4)2F3 cathode with nitrogen-doped carbon (NC) coating layer. This configuration enhances electronic conductivity and reduces diffusion barriers for sodium ion (Na+). The strategy of incorporating nitrogen-doped carbon coating not only facilitates the formation of a porous structure but also introduces additional defects and active sites. Such modifications accelerate the reaction kinetics and augment electrolyte interaction through an expanded specific surface area, thus streamlining the electrochemical process. Concurrently, strategic heteroatom substitution leads to a more efficient engagement of Na+ in the electrochemical activities, thereby bolstering the cathode's structural integrity. The vanadium fluorophosphate Na3.3K0.2V1.5Mg0.5(PO4)2F3@NC exhibits an electrochemical performance, including a high discharge specific capacity of 124.3 mA h g-1 at 0.1C, a long lifespan of 1000 cycles with a capacity retention of 93.1 % at 10C, and a rate property of 73.2 mA h g-1 at 20C. This research provides a method for preparing binary doped NVPF for energy storage electrochemistry.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; Duozhu Technology (Wuhan) Co., LTD, China
| | - Qiming Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; Duozhu Technology (Wuhan) Co., LTD, China.
| | - Shiyue Cao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; Duozhu Technology (Wuhan) Co., LTD, China
| | - Huijuan Zhu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; Duozhu Technology (Wuhan) Co., LTD, China
| | - Yilin Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; Duozhu Technology (Wuhan) Co., LTD, China
| |
Collapse
|
2
|
Asare H, Blodgett W, Satapathy S, John G. Charging the Future: Harnessing Nature's Designs for Bioinspired Molecular Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2312237. [PMID: 38881332 DOI: 10.1002/smll.202312237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Indexed: 06/18/2024]
Abstract
The transition toward electric-powered devices is anticipated to play a pivotal role in advancing the global net-zero carbon emission agenda aimed at mitigating greenhouse effects. This shift necessitates a parallel focus on the development of energy storage materials capable of supporting intermittent renewable energy sources. While lithium-ion batteries, featuring inorganic electrode materials, exhibit desirable electrochemical characteristics for energy storage and transport, concerns about the toxicity and ethical implications associated with mining transition metals in their electrodes have prompted a search for environmentally safe alternatives. Organic electrodes have emerged as promising and sustainable alternatives for batteries. This review paper will delve into the recent advancements in nature-inspired electrode design aimed at addressing critical challenges such as capacity degradation due to dissolution, low operating voltages, and the intricate molecular-level processes governing macroscopic electrochemical properties.
Collapse
Affiliation(s)
- Harrison Asare
- Department of Chemistry and Biochemistry, Center for Discovery and Innovation, The City College of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave, New York, NY, 10016, USA
| | - William Blodgett
- Department of Chemistry and Biochemistry, Center for Discovery and Innovation, The City College of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave, New York, NY, 10016, USA
| | | | - George John
- Department of Chemistry and Biochemistry, Center for Discovery and Innovation, The City College of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave, New York, NY, 10016, USA
| |
Collapse
|
3
|
Liang K, Zhao H, Li J, Huang X, Jia S, Chen W, Ren Y. Engineering Crystal Growth and Surface Modification of Na 3 V 2 (PO 4 ) 2 F 3 Cathode for High-Energy-Density Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207562. [PMID: 36799138 DOI: 10.1002/smll.202207562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Indexed: 05/11/2023]
Abstract
Na3 V2 (PO4 )2 F3 (NVPF) is a suitable cathode for sodium-ion batteries owing to its stable structure. However, the large radius of Na+ restricts diffusion kinetics during charging and discharging. Thus, in this study, a phosphomolybdic acid (PMA)-assisted hydrothermal method is proposed. In the hydrothermal process, the NVPF morphologies vary from bulk to cuboid with varying PMA contents. The optimal channel for accelerated Na+ transmission is obtained by cuboid NVPF. With nitrogen-doping of carbon, the conductivity of NVPF is further enhanced. Combined with crystal growth engineering and surface modification, the optimal nitrogen-doped carbon-covered NVPF cuboid (c-NVPF@NC) exhibits a high initial discharge capacity of 121 mAh g-1 at 0.2 C. Coupled with a commercial hard carbon (CHC) anode, the c-NVPF@NC||CHC full battery delivers 118 mAh g-1 at 0.2 C, thereby achieving a high energy density of 450 Wh kg-1 . Therefore, this work provides a novel strategy for boosting electrochemical performance by crystal growth engineering and surface modification.
Collapse
Affiliation(s)
- Kang Liang
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Hongshun Zhao
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Jianbin Li
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan, 415000, P. R. China
| | - Shuyong Jia
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Wenkai Chen
- Department of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yurong Ren
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
4
|
Jayachandran P, Angamuthu A, Gopalan P. Substitutional effects on the Na-involved electrochemical properties of isomeric benzoquinones. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Li D, Tang W, Tang F, Yan J, Jing L, Wang C, Yan Y, Xu L, Fan C. A Low-Cost Na-Ion and K-Ion Batteries Using a Common Organic Cathode and Bismuth Anode. CHEMSUSCHEM 2021; 14:3815-3820. [PMID: 34288500 DOI: 10.1002/cssc.202101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Molecule-aggregation organic electrodes in principle have the capability for "single-molecule-energy-storage" in metal-ion rechargeable batteries, which indicates that the same organic electrode can be simultaneously applied to multiple metal-ion rechargeable batteries. In this study, the polyanionic organic compound 9,10-anthraquinone-2,6-disulfonate (Na2 AQ26DS, 130 mAh g-1 ) is used as a common cathode and metal bismuth (Bi) as a common anode to simultaneously assemble low-cost Na-ion and K-ion full cells. The Na-ion full cells can deliver the peak discharge capacity of 139 mAh g-1 cathode at 0.5-3.0 V, and the K-ion full cells can show the peak discharge capacity of 130 mAh g-1 cathode at 0.5-3.0 V. These results are comparable to the best organic-based Na-ion and K-ion full cells reported to date.
Collapse
Affiliation(s)
- Di Li
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, P. R. China
| | - Wu Tang
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, P. R. China
| | - Fan Tang
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, P. R. China
| | - Jiaji Yan
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, P. R. China
| | - Lvchuan Jing
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, P. R. China
| | - Chuan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, P. R. China
| | - Yichao Yan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, P. R. China
| | - Liang Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Cong Fan
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, P. R. China
| |
Collapse
|
6
|
Liu S, Xiong M, Tang W, Hu Y, Yan Y, Xu L, Fan C. Electrolyte Effect on a Polyanionic Organic Anode for Pure Organic K-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38315-38324. [PMID: 34346212 DOI: 10.1021/acsami.1c09709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potassium naphthalene-1,4,5,8-tetracarboxylate (K4NTC, 117 mAh g-1) is a new organic anode for K-ion batteries, which possesses four strong K-O ionic bonds within a -4-valent naphthalene-1,4,5,8-tetracarboxylate skeleton (NTC4-). And thus, K4NTC is a polyanionic organic salt. Simultaneously, new insights are provided by comparing two typical electrolyte systems (carbonate and ether electrolytes) with KPF6 as the same solute. Finally, the pure organic K-ion batteries (OKIBs) are fabricated by using perylene-3,4,9,10-tetracarboxydianhydride (PTCDA) as the organic cathode and the reduced state (K6NTC) of K4NTC as the anode. And this OKIB can deliver a peak discharge capacity of 121 mAh g-1anode and run over 1500 cycles in 0.5-3 V using ether electrolytes.
Collapse
Affiliation(s)
- Sihong Liu
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Ming Xiong
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Wu Tang
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Yang Hu
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Yichao Yan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Liang Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Cong Fan
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| |
Collapse
|
7
|
Werner D, Apaydin DH, Wielend D, Geistlinger K, Saputri WD, Griesser UJ, Dražević E, Hofer TS, Portenkirchner E. Analysis of the Ordering Effects in Anthraquinone Thin Films and Its Potential Application for Sodium Ion Batteries. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:3745-3757. [PMID: 33815649 PMCID: PMC8016091 DOI: 10.1021/acs.jpcc.0c10778] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The ordering effects in anthraquinone (AQ) stacking forced by thin-film application and its influence on dimer solubility and current collector adhesion are investigated. The structural characteristics of AQ and its chemical environment are found to have a substantial influence on its electrochemical performance. Computational investigation for different charged states of AQ on a carbon substrate obtained via basin hopping global minimization provides important insights into the physicochemical thin-film properties. The results reveal the ideal stacking configurations of the individual AQ-carrier systems and show ordering effects in a periodic supercell environment. The latter reveals the transition from intermolecular hydrogen bonding toward the formation of salt bridges between the reduced AQ units and a stabilizing effect upon the dimerlike rearrangement, while the strong surface-molecular interactions in the thin-film geometries are found to be crucial for the formed dimers to remain electronically active. Both characteristics, the improved current collector adhesion and the stabilization due to dimerization, are mutual benefits of thin-film electrodes over powder-based systems. This hypothesis has been further investigated for its potential application in sodium ion batteries. Our results show that AQ thin-film electrodes exhibit significantly better specific capacities (233 vs 87 mAh g-1 in the first cycle), Coulombic efficiencies, and long-term cycling performance (80 vs 4 mAh g-1 after 100 cycles) over the AQ powder electrodes. By augmenting the experimental findings via computational investigations, we are able to suggest design strategies that may foster the performance of industrially desirable powder-based electrode materials.
Collapse
Affiliation(s)
- Daniel Werner
- Institute
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Dominik Wielend
- Linz
Institute for Organic Solar Cell (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Katharina Geistlinger
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Wahyu D. Saputri
- Austrian-Indonesian
Centre (AIC) for Computational Chemistry, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
- Indonesian
Institute of Sciences, Sasana Widya Sarwono (SWS), 12710 Jakarta, Indonesia
| | | | - Emil Dražević
- Department
of Biological and Chemical Engineering, Aarhus University, 8200 Aarhus N, Denmark
| | - Thomas S. Hofer
- Theoretical
Chemistry Division, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | | |
Collapse
|
8
|
|