1
|
Khalid M, Granollers Mesa M, Scapens D, Osatiashtiani A. Advances in Sustainable γ-Valerolactone (GVL) Production via Catalytic Transfer Hydrogenation of Levulinic Acid and Its Esters. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:16494-16517. [PMID: 39545102 PMCID: PMC11558667 DOI: 10.1021/acssuschemeng.4c05812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
γ-Valerolactone (GVL) is a versatile chemical derived from biomass, known for its uses such as a sustainable and environmentally friendly solvent, a fuel additive, and a building block for renewable polymers and fuels. Researchers are keenly interested in the catalytic transfer hydrogenation of levulinic acid and its esters as a method to produce GVL. This approach eliminates the need for H2 pressure and costly metal catalysts, improving the safety, cost effectiveness and environmental sustainability of the process. Our Perspective highlights recent advancements in this field, particularly with respect to catalyst development, categorizing them according to catalyst types, including zirconia-based, zeolites, precious metals, and nonprecious metal catalysts. We discuss factors such as reaction conditions, catalyst characteristics, and hydrogen donors and outline challenges and future research directions in this popular area of research.
Collapse
Affiliation(s)
- Memoona Khalid
- Energy
and Bioproducts Research Institute (EBRI), College of Engineering
and Physical Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Marta Granollers Mesa
- Energy
and Bioproducts Research Institute (EBRI), College of Engineering
and Physical Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Dave Scapens
- Luxfer
MEL Technologies, Manchester M27 8LN, United
Kingdom
| | - Amin Osatiashtiani
- Energy
and Bioproducts Research Institute (EBRI), College of Engineering
and Physical Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
2
|
Popova M, Dimitrov M, Boycheva S, Dimitrov I, Ublekov F, Koseva N, Atanasova G, Karashanova D, Szegedi Á. Ni-Cu and Ni-Co-Modified Fly Ash Zeolite Catalysts for Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone. Molecules 2023; 29:99. [PMID: 38202681 PMCID: PMC10779998 DOI: 10.3390/molecules29010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Monometallic (Ni, Co, Cu) and bimetallic (Ni-Co, Ni-Cu) 10-20 wt.% metal containing catalysts supported on fly ash zeolite were prepared by post-synthesis impregnation method. The catalysts were characterized by X-ray powder diffraction, N2 physisorption, XPS and H2-TPR methods. Finely dispersed metal oxides and mixed oxides were detected after the decomposition of the impregnating salt on the relevant zeolite support. Via reduction intermetallic, NiCo and NiCu phases were identified in the bimetallic catalysts. The catalysts were studied in hydrodeoxygenation of lignocellulosic biomass-derived levulinic acid to γ-valerolactone (GVL) in a batch system by water as a solvent. Bimetallic, 10 wt.% Ni, and 10 wt.% Cu or Co containing fly ash zeolite catalysts showed higher catalytic activity than monometallic ones. Their selectivity to GVL reached 70-85% at about 100% conversion. The hydrogenation activity of catalysts was found to be stronger compared to their hydration ability; therefore, the reaction proceeds through formation of 4-hydroxy pentanoic acid as the only intermediate compound.
Collapse
Affiliation(s)
- Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.D.); (I.D.)
| | - Momtchil Dimitrov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.D.); (I.D.)
| | - Silviya Boycheva
- Department of Thermal and Nuclear Power Engineering, Technical University, 1756 Sofia, Bulgaria;
| | - Ivan Dimitrov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.D.); (I.D.)
| | - Filip Ublekov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.U.); (N.K.)
| | - Neli Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.U.); (N.K.)
| | - Genoveva Atanasova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Daniela Karashanova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Ágnes Szegedi
- HUN-REN, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok krt. 2., 1117 Budapest, Hungary
| |
Collapse
|
3
|
Xiong J, Lu X, Li W, Yang S, Zhang R, Li X, Han J, Li D, Yu Z. One-Pot Tandem Transformation of Inulin as Fructose-Rich Platform Towards 5-Hydroxymethylfurfural: Feedstock Advantages, Acid-Site Regulation and Solvent Effects. CHEMSUSCHEM 2023; 16:e202201936. [PMID: 36545829 DOI: 10.1002/cssc.202201936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The valorization of non-grain biomass feedstocks to value-added chemicals, polymers and alternative fuels is a crucial route for the utilization of renewable resources. Inulin belongs to a type of fructans, which is a pivotal platform bridging upstream fructose-rich biomass feedstocks typically represented by Jerusalem artichoke and downstream platform molecules such as alcohols, aldehydes and acids. Fructose can be directly obtained from the inulin hydrolysis and further converted into various platform chemicals, which is a more environmentally economical route than the conventional catalytic upgrading of cellulose. Nevertheless, most perspectives over the last decade have focused on the valorization of cellulose-derived carbohydrates, without much emphasis on the practical importance of one-pot transformation of inulin. In this review, we aim to demonstrate an efficient one-pot tandem transformation system of the inulin as fructose-rich platform towards 5-hydroxymethylfurfural (HMF). Core concerns are placed on elucidating the contributing roles of acid sites and solvents in enhancing the overall catalytic performance. The perspectives presented in this review may contribute to the innovation in the catalytic refining of fructose-rich non-grain biomass and the development of a greener biomass-based energy system.
Collapse
Affiliation(s)
- Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Wei Li
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Shijie Yang
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Jinfeng Han
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Lan G, Li Z, Han X, Zhang L, Qiu Y, Sun X, Cheng Z, Li Y. Modulating the surface structure of nanodiamonds to enhance the electronic metal–support interaction of efficient ruthenium catalysts for levulinic acid hydrogenation. NEW J CHEM 2023. [DOI: 10.1039/d2nj06229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The annealed nanodiamond-supported Ru NPs with high electron density exhibit efficient activity and high stability for hydrogenation of levulinic acid.
Collapse
Affiliation(s)
- Guojun Lan
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, China
| | - Zhenqing Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, China
| | - Xiaojia Han
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, China
| | - Liping Zhang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, China
| | - Yiyang Qiu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, China
| | - Xiucheng Sun
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, China
| | - Zaizhe Cheng
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, China
| | - Ying Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, China
| |
Collapse
|
5
|
Antunes MM, Silva AF, Fernandes A, Ribeiro F, Neves P, Pillinger M, Valente AA. Micro/mesoporous LTL derived materials for catalytic transfer hydrogenation and acid reactions of bio-based levulinic acid and furanics. Front Chem 2022; 10:1006981. [PMID: 36247668 PMCID: PMC9558274 DOI: 10.3389/fchem.2022.1006981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
The biomass-derived platform chemicals furfural and 5-(hydroxymethyl)furfural (HMF) may be converted to α-angelica lactone (AnL) and levulinic acid (LA). Presently, LA (synthesized from carbohydrates) has several multinational market players. Attractive biobased oxygenated fuel additives, solvents, etc., may be produced from AnL and LA via acid and reduction chemistry, namely alkyl levulinates and γ-valerolactone (GVL). In this work, hierarchical hafnium-containing multifunctional Linde type L (LTL) related zeotypes were prepared via top-down strategies, for the chemical valorization of LA, AnL and HMF via integrated catalytic transfer hydrogenation (CTH) and acid reactions in alcohol medium. This is the first report of CTH applications (in general) of LTL related materials. The influence of the post-synthesis treatments/conditions (desilication, dealumination, solid-state impregnation of Hf or Zr) on the material properties and catalytic performances was studied. AnL and LA were converted to 2-butyl levulinate (2BL) and GVL in high total yields of up to ca. 100%, at 200°C, and GVL/2BL molar ratios up to 10. HMF conversion gave mainly the furanic ethers 5-(sec-butoxymethyl)furfural and 2,5-bis(sec-butoxymethyl)furan (up to 63% total yield, in 2-butanol at 200°C/24 h). Mechanistic, reaction kinetics and material characterization studies indicated that the catalytic results depend on a complex interplay of different factors (material properties, type of substrate). The recovered-reused solids performed steadily.
Collapse
Affiliation(s)
- Margarida M. Antunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Margarida M. Antunes, ; Anabela A. Valente,
| | - Andreia F. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Auguste Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Neves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Martyn Pillinger
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Anabela A. Valente
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Margarida M. Antunes, ; Anabela A. Valente,
| |
Collapse
|
6
|
Guo M, Lu X, Xiong J, Zhang R, Li X, Qiao Y, Ji N, Yu Z. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review. CHEMSUSCHEM 2022; 15:e202201074. [PMID: 35790081 DOI: 10.1002/cssc.202201074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.
Collapse
Affiliation(s)
- Mengyan Guo
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University Guangzhou, Guangdong, 510275, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
7
|
Valentini F, Di Erasmo B, Ciancuti C, Rossi S, Maramai S, Taddei M, Vaccaro L. Macroreticular POLITAG-Pd(0) for the waste minimized hydrogenation/reductive amination of phenols using formic acid as hydrogen source. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Antunes MM, Silva AF, Fernandes A, Valente AA. γ-Valerolactone synthesis from α-angelica lactone and levulinic acid over biobased multifunctional nanohybrid catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Hijazi A, Khalaf N, Kwapinski W, Leahy JJ. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H 2 donor: a critical review. RSC Adv 2022; 12:13673-13694. [PMID: 35530384 PMCID: PMC9073962 DOI: 10.1039/d2ra01379g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
This review sheds light on the catalytic valorisation of agroforestry biomass through levulinic acid and formic acid towards γ-valerolactone and other higher-value chemicals. γ-Valerolactone is produced by the hydrogenation of levulinic acid, which can be achieved through an internal hydrogen transfer reaction with formic acid in the presence of catalyst. By reviewing corresponding catalysts, the paper underlines the most efficient steps constituting an integrated sustainable process that eliminates the need for external H2 sources while producing biofuels as an alternative energy source. Furthermore, the review emphasizes the role of catalysts in the hydrogenation of levulinic acid, with special focus on heterogeneous catalysts. The authors highlighted the dual role of different catalysts by comparing their activity, morphology, electronic structure, synergetic relation between support and doped species, as well as their deactivation and recyclability. Acknowledging the need for green and sustainable H2 production, the review extends to cover the role of photo catalysis in dissociating H2-donor solvents for reducing levulinic acid into γ-valerolactone under mild temperatures. To wrap up, the critical discussion presented enables readers to hone their knowledge about different schools and emphasizes research gaps emerging from experimental work. The review concludes with a comprehensive table summarizing the recent catalysts reported between the years 2017-2021.
Collapse
Affiliation(s)
- Ayman Hijazi
- Chemical and Environmental Science Department, University of Limerick Limerick V94 T9PX Ireland +353-83-3783841
| | - Nidal Khalaf
- Chemical and Environmental Science Department, University of Limerick Limerick V94 T9PX Ireland +353-83-3783841
| | - Witold Kwapinski
- Chemical and Environmental Science Department, University of Limerick Limerick V94 T9PX Ireland +353-83-3783841
| | - J J Leahy
- Chemical and Environmental Science Department, University of Limerick Limerick V94 T9PX Ireland +353-83-3783841
| |
Collapse
|
10
|
Renewable bio-based routes to γ-valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Highly dispersed and ultra-small Ni nanoparticles over hydroxyapatite for hydrogenation of levulinic acid. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Selective conversion of levulinic acid to gamma-valerolactone over Ni-based catalysts: Impacts of catalyst formulation on sintering of nickel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Osatiashtiani A, Orr SA, Durndell L, Collado García I, Merenda A, Lee AF, Wilson K. Liquid phase catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over ZrO 2/SBA-15. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00538g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Valerolactone (GVL) is an important bio-derived platform molecule whose atom- and energy efficient, and scalable, catalytic synthesis is highly desirable. Catalytic transfer hydrogenation (CTH) of ethyl levulinate (EL) to γ-valerolactone...
Collapse
|
14
|
Jiang S, Ji N, Diao X, Li H, Rong Y, Lei Y, Yu Z. Vacancy Engineering in Transition Metal Sulfide and Oxide Catalysts for Hydrodeoxygenation of Lignin-Derived Oxygenates. CHEMSUSCHEM 2021; 14:4377-4396. [PMID: 34342394 DOI: 10.1002/cssc.202101362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The catalytic hydrodeoxygenation (HDO) of lignin has long been a hot research topic and vacancy engineering is a new means to develop more efficient catalysts for this process. Oxygen vacancies and sulfur vacancies are both widely used in HDO. Based on the current research status of vacancies in the field of lignin-derived oxygenates, this Minireview discusses in detail design methods for vacancy engineering, including surface activation, synergistic modification, and morphology control. Moreover, it is clarified that in the HDO reaction, vacancies can act as acidic sites, promote substrate adsorption, and regulate product distribution, whereas for the catalysts, vacancies can enhance stability and reducibility, improve metal dispersion, and improve redox capacity. Finally, the characterization of vacancies is summarized and strategies are proposed to address the current deficiencies in this field.
Collapse
Affiliation(s)
- Sinan Jiang
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Xinyong Diao
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Hanyang Li
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Yue Rong
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Yaxuan Lei
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
15
|
Yu Z, Ji N, Xiong J, Li X, Zhang R, Zhang L, Lu X. Ruthenium‐Nanoparticle‐Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void‐Confinement Effect. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Jian Xiong
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| | - Xiaoyun Li
- School of Agriculture Sun Yat-sen University Guangzhou Guangdong 510275 P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Lidong Zhang
- State Key Laboratory of Fire Science University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xuebin Lu
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| |
Collapse
|
16
|
Yu Z, Ji N, Xiong J, Li X, Zhang R, Zhang L, Lu X. Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect. Angew Chem Int Ed Engl 2021; 60:20786-20794. [PMID: 34159675 DOI: 10.1002/anie.202107314] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/17/2022]
Abstract
As a typical class of man-made nanoreactors, metal-loaded hollow carbon nanostructures (MHC nanoreactors) exhibit competitive potentials in the heterogeneous catalysis due to their tailorable microenvironment effects, in which the void-confinement effect is one of the most fundamental functions in boosting the catalytic performance. Herein this paper, Ru-loaded hollow carbon spheres are employed as nanoreactors with a crucial biomass hydrogenation process, levulinic acid (LA) hydrogenation into γ-valerolactone, as the probe reaction to further recognize the forming mechanism of this pivotal effect. We demonstrated that the void-confinement effect of the selected MHC nanoreactors is essentially driven by an integrating action of electronic metal-support interaction, reactant enrichment and diffusion, which are mainly ascribed to peculiar properties of hollow nanoreactors both in electronic and structural aspects, respectively. This work offers a distinct case for interpreting the catalytic behaviour of MHC nanoreactors, which could potentially promise broader insights into the microenvironment engineering strategies of hollow nanostructures.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, Tibet, 850000, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Lidong Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa, Tibet, 850000, P. R. China
| |
Collapse
|
17
|
Hu B, Li X, Busser W, Schmidt S, Xia W, Li G, Li X, Peng B. The Role of Nitrogen-doping in the Catalytic Transfer Hydrogenation of Phenol to Cyclohexanone with Formic Acid over Pd supported on Carbon Nanotubes. Chemistry 2021; 27:10948-10956. [PMID: 33998733 PMCID: PMC8361974 DOI: 10.1002/chem.202100981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Highly selective one‐step hydrogenation of phenol to cyclohexanone, an important intermediate in the production of nylon 6 and nylon 66, is desirable but remains a challenge. Pd nanoparticles supported on nitrogen‐ and oxygen‐functionalized carbon nanotubes (NCNTs, OCNTs) were prepared, characterized, and applied in the hydrogenation of phenol to cyclohexanone to study the effect of N‐doping. Almost full conversion of phenol with high selectivity to cyclohexanone was achieved over Pd/NCNT under mild reaction conditions using either H2 or formic acid (FA) as a hydrogen source. The effects of reaction temperature and FA/phenol ratio and the reusability were investigated. Separate FA decomposition experiments without and with the addition of phenol were performed to investigate the reaction mechanism, especially the deactivation behavior. Deactivation was observed for both catalysts during the FA decomposition, while only Pd/OCNT rather than Pd/NCNT was deactivated in the transfer hydrogenation with FA and the FA decomposition in the presence of phenol, indicating the unique role of N‐doping. Therefore, we assume that deactivation is caused by the strongly bound formates on the active Pd sites, suppressing further FA decomposition and/or transfer hydrogenation on Pd. The nonplanar adsorption of phenol on NCNTs via weak O−H⋅⋅⋅N interactions enables the occurrence of the subsequent hydrogenation by adsorbed formate on Pd.
Collapse
Affiliation(s)
- Bin Hu
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Xiaoyu Li
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Wilma Busser
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Stefan Schmidt
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Wei Xia
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Guangci Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Xuebing Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| |
Collapse
|
18
|
Fan M, Shao Y, Sun K, Li Q, Zhang S, Wang Y, Xiang J, Hu S, Wang S, Hu X. Switching production of γ-valerolactone and 1,4-pentanediol from ethyl levulinate via tailoring alkaline sites of CuMg catalyst and hydrogen solubility in reaction medium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - Navya Subray Bhat
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
20
|
Serrà A, Artal R, Philippe L, Gómez E. Electrodeposited Ni-Rich Ni-Pt Mesoporous Nanowires for Selective and Efficient Formic Acid-Assisted Hydrogenation of Levulinic Acid to γ-Valerolactone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4666-4677. [PMID: 33826345 PMCID: PMC8631738 DOI: 10.1021/acs.langmuir.1c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In pursuit of friendlier conditions for the preparation of high-value biochemicals, we developed catalytic synthesis of γ-valerolactone by levulinic acid hydrogenation with formic acid as the hydrogen source. Both levulinic and formic acid are intermediate products in the biomass transformation processes. The objective of the work is twofold: the development of a novel approach for milder synthesis conditions to produce γ-valerolactone and the reduction of the economic cost of the catalyst. Ni-rich Ni-Pt mesoporous nanowires were synthesized in an aqueous medium using a combined hard-soft-template-assisted electrodeposition method, in which porous polycarbonate membranes controlled the shape and the Pluronic P-123 copolymer served as the porogen agent. The electrodeposition conditions selected favored nickel deposition and generated nanowires with nickel percentages above 75 atom %. The increase in deposition potential favored nickel deposition. However, it was detrimental for the porous diameter because the mesoporous structure is promoted by the presence of the platinum-rich micelles near the substrate, which is not favored at more negative potentials. The prepared catalysts promoted the complete transformation to γ-valerolactone in a yield of around 99% and proceeded with the absence of byproducts. The coupling temperature and reaction time were optimized considering the energy cost. The threshold operational temperature was established at 140 °C, at which, 120 min was sufficient for attaining the complete transformation. Working temperatures below 140 °C rendered the reaction completion difficult. The Ni78Pt22 nanowires exhibited excellent reusability, with minimal nickel leaching into the reaction mixture, whereas those with higher nickel contents showed corrosion.
Collapse
Affiliation(s)
- Albert Serrà
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
- Institute
of Nanoscience and Nanotechnology (INUB), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| | - Raül Artal
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
| | - Laetitia Philippe
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Elvira Gómez
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
- Institute
of Nanoscience and Nanotechnology (INUB), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Jurado‐Vázquez T, Arévalo A, García JJ. Transfer Hydrogenation of Levulinic Acid to γ‐Valerolactone and Pyrrolidones Using a Homogeneous Nickel Catalyst. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tamara Jurado‐Vázquez
- Facultad de Química Universidad Nacional Autónoma de México Mexico City 04510 Mexico
| | - Alma Arévalo
- Facultad de Química Universidad Nacional Autónoma de México Mexico City 04510 Mexico
| | - Juventino J. García
- Facultad de Química Universidad Nacional Autónoma de México Mexico City 04510 Mexico
| |
Collapse
|
22
|
Abstract
Formic acid (HCOOH) as an inexpensive and versatile reagent has gained broad
attention in the field of green synthesis and chemical industry. Formic acid acts not only as a
convenient and less toxic CO surrogate, but also as an excellent formylative reagent, C1
source and hydrogen donor in organic reactions. Over the past decades, many exciting contributions
have been made which have helped chemists to understand the mechanisms of these
reactions. The review will examine recent advances in the utilization of formic acid as an
economical, practical and multipurpose reactant in synthetic transformations.
Collapse
Affiliation(s)
- Xiao-Hua Cai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Su-qian Cai
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Bing Xie
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
23
|
Abstract
Sustainable development is the common goal of the current concepts of bioeconomy and circular economy. In this sense, the biorefineries platforms are a strategic factor to increase the bioeconomy in the economic balance. The incorporation of renewable sources to produce fuels, chemicals, and energy, includes sustainability, reduction of greenhouse gases (GHG), and creating more manufacturing jobs fostering the advancement of regional and social systems by implementing the comprehensive use of available biomass, due to its low costs and high availability. This paper describes the emerging biorefinery strategies to produce fuels (bio-ethanol and γ-valerolactone) and energy (pellets and steam), compared with the currently established biorefineries designed for fuels, pellets, and steam. The focus is on the state of the art of biofuels and energy production and environmental factors, as well as a discussion about the main conversion technologies, production strategies, and barriers. Through the implementation of biorefineries platforms and the evaluation of low environmental impact technologies and processes, new sustainable production strategies for biofuels and energy can be established, making these biobased industries into more competitive alternatives, and improving the economy of the current value chains.
Collapse
|
24
|
Ji N, Diao X, Yu Z, Liu Z, Jiang S, Lu X, Song C, Liu Q, Ma D, Liu C. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over supported MoS2 catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00524c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MoS2 catalytic system was developed for the efficient catalytic transfer hydrogenation of levulinate esters to γ-valerolactone, and the support effect and reaction mechanism were discussed for this novel system.
Collapse
|
25
|
Anjali K, Vijayan A, Venkatesha NJ, Sakthivel A. Niobium based macromolecule preparation and its potential application in biomass derived levulinic acid esterification. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Weng R, Lu X, Ji N, Fukuoka A, Shrotri A, Li X, Zhang R, Zhang M, Xiong J, Yu Z. Taming the butterfly effect: modulating catalyst nanostructures for better selectivity control of the catalytic hydrogenation of biomass-derived furan platform chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01708j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This minireview highlights versatile routes for catalyst nanostructure modulation for better hydrogenation selectivity control of typical biomass-derived furan platform chemicals to tame the butterfly effect on the catalytic selectivity.
Collapse
Affiliation(s)
- Rengui Weng
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou 350118, P.R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa 850000, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangdong 510275, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Ming Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa 850000, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
27
|
The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source. Molecules 2020; 25:molecules25225362. [PMID: 33212838 PMCID: PMC7698119 DOI: 10.3390/molecules25225362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
The influence of the nature of carbon materials used as a support for Ru/C catalysts on levulinic acid hydrogenation with formic acid as a hydrogen source toward gamma-valerolactone was investigated. It has been shown that the physicochemical properties of carbon strongly affect the catalytic activity of Ru catalysts. The relationship between the hydrogen mobility, strength of hydrogen adsorption, and catalytic performance was established. The catalyst possessing the highest number of defects, stimulating metal support interaction, exhibited the highest activity. The effect of the catalyst grain size was also studied. It was shown that the decrease in the grain size resulted in the formation of smaller Ru crystallites on the catalyst surface, which facilitates the activity.
Collapse
|
28
|
Shivhare A, Kumar A, Srivastava R. An Account of the Catalytic Transfer Hydrogenation and Hydrogenolysis of Carbohydrate‐Derived Renewable Platform Chemicals over Non‐Precious Heterogeneous Metal Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001415] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Atal Shivhare
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab 140001 India
| | - Abhinav Kumar
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
29
|
Yu Z, Lu X, Wang X, Xiong J, Li X, Zhang R, Ji N. Metal-Catalyzed Hydrogenation of Biomass-Derived Furfural: Particle Size Effects and Regulation Strategies. CHEMSUSCHEM 2020; 13:5185-5198. [PMID: 32738188 DOI: 10.1002/cssc.202001467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The hydrogenation of furfural (FUR), a typical bio-based furan derivative, is a critical reaction within the roadmap for upgrading lignocellulosic biomass into high value-added chemicals and liquid fuels, the performance of which is strongly correlated with the catalysts' intrinsic peculiarities. Metal catalysts with tailorable sizes, uniform dispersions and robust sintering resistance are generally recognized as a prerequisite for obtaining better hydrogenation activity, selectivity and stability, which has prompted intensive research into metal particle size effects and their regulation strategies. The roles of metal particle sizes and corresponding dispersions of metal catalysts used for FUR hydrogenation have been clearly recognized to be crucial over the past decade. In this regard, this systematic Minireview aims to provide profound insights into particle size effects in the metal-catalyzed hydrogenation of FUR, as well as conditional and structural approaches to regulating these effects. In addition, from the aspect of catalyst stability, the impacts and improvements of the metal particle sintering issue are analyzed. Moreover, several suggestions are proposed in response to the challenges in regulating particle size effects. Furthermore, the viewpoints presented herein would potentially contribute to the rational development of metal hydrogenation catalysts and further help to boost a more sustainable biomass refining system.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Xiaotong Wang
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Jian Xiong
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
30
|
Hydrogenative Cyclization of Levulinic Acid to γ-Valerolactone with Methanol and Ni-Fe Bimetallic Catalysts. Catalysts 2020. [DOI: 10.3390/catal10091096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.
Collapse
|
31
|
Li T, Ji N, Jia Z, Diao X, Wang Z, Liu Q, Song C, Lu X. Effects of metal promoters in bimetallic catalysts in hydrogenolysis of lignin derivatives into value‐added chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.202001124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tingting Li
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhichao Jia
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xinyong Diao
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhenjiao Wang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Qingling Liu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Chunfeng Song
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
- Department of Chemistry & Environmental Science Tibet University Lhasa 850000 P. R. China
| |
Collapse
|
32
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|