1
|
Pikovskoi II, Kosyakov DS, Belesov AV. Resolution-enhanced Kendrick mass defect analysis for improved mass spectrometry characterization of lignin. Int J Biol Macromol 2024; 273:133160. [PMID: 38889836 DOI: 10.1016/j.ijbiomac.2024.133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Lignin is a promising renewable source of valuable organic compounds and environmentally benign materials. However, its involvement in economic circulation and the creation of new biorefining technologies require an understanding of its chemical composition and structure. This problem can be overcome by applying mass spectrometry analytical techniques in combination with advanced chemometric methods for mass spectra processing. The present study is aimed at the development of mass defect filtering to characterize the chemical composition of lignin at the molecular level. This study introduces a novel approach involving resolution-enhanced Kendrick mass defect (REKMD) analysis for the processing of atmospheric pressure photoionization Orbitrap mass spectra of lignin. The set of priority Kendrick fractional base units was predefined in model experiments and provided a substantially expanding available mass defect range for the informative visualization of lignin mass spectra. The developed REKMD analysis strategy allowed to obtain the most complete data on all the homologous series typical of lignin and thus facilitated the interpretation and assignment of elemental compositions and structural formulas to oligomers detected in extremely complex mass spectra, including tandem ones. For the first time, the minor modifications (sulfation) of lignin obtained in ionic liquid-based biorefining processes were revealed.
Collapse
Affiliation(s)
- Ilya I Pikovskoi
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia.
| | - Dmitry S Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
| | - Artyom V Belesov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
| |
Collapse
|
2
|
Towle Z, Cruickshank F, Mackay CL, Clarke DJ, Horsfall LE. Utilising Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to track the oxidation of lignin by an alkaliphilic laccase. Analyst 2024; 149:2399-2411. [PMID: 38477231 PMCID: PMC11018093 DOI: 10.1039/d4an00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Lignin is a complex heteroaromatic polymer which is one of the most abundant and diverse biopolymers on the planet. It comprises approximately one third of all woody plant matter, making it an attractive candidate as an alternative, renewable feedstock to petrochemicals to produce fine chemicals. However, the inherent complexity of lignin makes it difficult to analyse and characterise using common analytical techniques, proving a hindrance to the utilisation of lignin as a green chemical feedstock. Herein we outline the tracking of lignin degradation by an alkaliphilic laccase in a semi-quantitative manner using a combined chemical analysis approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterise shifts in chemical diversity and relative abundance of ions, and NMR to highlight changes in the structure of lignin. Specifically, an alkaliphilic laccase was used to degrade an industrially relevant lignin, with compounds such as syringaresinol being almost wholly removed (95%) after 24 hours of treatment. Structural analyses reinforced these findings, indicating a >50% loss of NMR signal relating to β-β linkages, of which syringaresinol is representative. Ultimately, this work underlines a combined analytical approach that can be used to gain a broader semi-quantitative understanding of the enzymatic activity of laccases within a complex, non-model mixture.
Collapse
Affiliation(s)
- Zak Towle
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK.
| | - Faye Cruickshank
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Louise E Horsfall
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
3
|
Dütsch L, Sander K, Brendler E, Bremer M, Fischer S, Vogt C, Zuber J. Chemometric Combination of Ultrahigh Resolving Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy for a Structural Characterization of Lignin Compounds. ACS OMEGA 2024; 9:628-641. [PMID: 38222598 PMCID: PMC10785065 DOI: 10.1021/acsomega.3c06222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
In recent years, the potential of lignins as a resource for material-based applications has been highlighted in many scientific and nonscientific publications. But still, to date, a lack of detailed structural knowledge about this ultracomplex biopolymer undermines its great potential. The chemical complexity of lignin demands a combination of different, powerful analytical methods, in order to obtain these necessary information. In this paper, we demonstrate a multispectroscopic approach using liquid-state and solid-state Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and nuclear magnetic resonance (NMR) spectroscopy to characterize a fractionated LignoBoost lignin. Individual FT-ICR-MS, tandem MS, and NMR results helped to determine relevant information about the different lignin fractions, such as molecular weight distributions, oligomer sizes, linkage types, and presence of specific functional groups. In addition, a hetero spectroscopic correlation approach was applied to chemometrically combine MS, MS/MS, and NMR data sets. From these correlation analyses, it became obvious that a combination of tandem MS and NMR data sets gives the opportunity to comprehensively study and describe the general structure of complex biopolymer samples. Compound-specific structural information are obtainable, if this correlation approach is extended to 1D-MS and NMR data, as specific functional groups or linkages are verifiable for a defined molecular formula. This enables structural characterization of individual lignin compounds without the necessity for tandem MS experiments. Hence, these correlation results significantly improve the depth of information of each individual analysis and will hopefully help to structurally elucidate entire lignin structures in the near future.
Collapse
Affiliation(s)
- Lara Dütsch
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Strasse 29, Freiberg 09599, Germany
| | - Klara Sander
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Strasse 29, Freiberg 09599, Germany
| | - Erica Brendler
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Strasse 29, Freiberg 09599, Germany
| | - Martina Bremer
- Institute
of Plant and Wood Chemistry, TU Dresden, Pienner Strasse 19, Tharandt 01737, Germany
| | - Steffen Fischer
- Institute
of Plant and Wood Chemistry, TU Dresden, Pienner Strasse 19, Tharandt 01737, Germany
| | - Carla Vogt
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Strasse 29, Freiberg 09599, Germany
| | - Jan Zuber
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Strasse 29, Freiberg 09599, Germany
| |
Collapse
|
4
|
Letourneau DR, Marzullo BP, Alexandridou A, Barrow MP, O'Connor PB, Volmer DA. Characterizing lignins from various sources and treatment processes after optimized sample preparation techniques and analysis via ESI-HRMS and custom mass defect software tools. Anal Bioanal Chem 2023; 415:6663-6675. [PMID: 37714972 PMCID: PMC10598097 DOI: 10.1007/s00216-023-04942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Sample preparation of complex, natural mixtures such as lignin prior to mass spectrometry analysis, however minimal, is a critical step in ensuring accurate and interference-free results. Modern shotgun-MS techniques, where samples are directly injected into a high-resolution mass spectrometer (HRMS) with no prior separation, usually still require basic sample pretreatment such as filtration and appropriate solvents for full dissolution and compatibility with atmospheric pressure ionization interfaces. In this study, sample preparation protocols have been established for a unique sample set consisting of a wide variety of degraded lignin samples from numerous sources and treatment processes. The samples were analyzed via electrospray (ESI)-HRMS in negative and positive ionization modes. The resulting information-rich HRMS datasets were then transformed into the mass defect space with custom R scripts as well as the open-source Constellation software as an effective way to visualize changes between the samples due to the sample preparation and ionization conditions as well as a starting point for comprehensive characterization of these varied sample sets. Optimized conditions for the four investigated lignins are proposed for ESI-HRMS analysis for the first time, giving an excellent starting point for future studies seeking to better characterize and understand these complex mixtures.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany
| | - Bryan P Marzullo
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany.
| |
Collapse
|
5
|
Dong X, Mayes HB, Morreel K, Katahira R, Li Y, Ralph J, Black BA, Beckham GT. Energy-Resolved Mass Spectrometry as a Tool for Identification of Lignin Depolymerization Products. CHEMSUSCHEM 2023; 16:e202201441. [PMID: 36197743 DOI: 10.1002/cssc.202201441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Lignin is the largest source of bio-based aromatic compounds in nature, and its valorization is essential to the sustainability of lignocellulosic biorefining. Characterizing lignin-derived compounds remains challenging due to the heterogeneity of this biopolymer. Tandem mass spectrometry is a promising tool for lignin structural analytics, as fragmentation patterns of model compounds can be extrapolated to identify characteristic moieties in complex samples. This work extended previous resonance excitation-type collision-induced dissociation (CID) methods that identified lignin oligomers containing β-O-4, β-5, and β-β bonds, to also identify characteristics of 5-5, β-1, and 4-O-5 dimers, enabled by quadrupole time-of-flight (QTOF) CID with energy-resolved mass spectrometry (ERMS). Overall, QTOF-ERMS offers in-depth structural information and could ultimately contribute to tools for high-throughput lignin dimer identification.
Collapse
Affiliation(s)
- Xueming Dong
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Heather B Mayes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Kris Morreel
- RIC Group, President Kennedypark 26, 8500, Kortrijk, Belgium
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yanding Li
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
| | - John Ralph
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53706, USA
| | - Brenna A Black
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
6
|
Letourneau DR, Volmer DA. Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review. MASS SPECTROMETRY REVIEWS 2023; 42:144-188. [PMID: 34293221 DOI: 10.1002/mas.21716] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures-without chromatographic separation-using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the "lignome" than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species' energy and materials needs.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
7
|
Rodrigues RCLB, Green Rodrigues B, Vieira Canettieri E, Acosta Martinez E, Palladino F, Wisniewski A, Rodrigues D. Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment - A review. BIORESOURCE TECHNOLOGY 2022; 348:126627. [PMID: 34958907 DOI: 10.1016/j.biortech.2021.126627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The trend in the modern world is to replace fossil fuels with green energy sources in order to reduce their environmental impact. The biorefinery industry, within this premise, needs to establish quantitative and qualitative analytical methods to better understand lignocellulosic biomass composition and structure. This paper presents chemical techniques (chromatography, thermal analysis, HRMS, FTIR, NIR, and NMR) and physicochemical techniques (XRD, optical and electron microscopy techniques - Confocal fluorescence, Raman, SPM, AFM, SEM, and TEM) for the microstructural characterization of lignocellulosic biomass and its derivatives. Each of these tools provides different and complementary information regarding molecular and microstructural composition of lignocellulosic biomass. Understanding these properties is essential for the design and operation of associated biomass conversion processing facilities. PAT, monitored in real-time, ensures an economical and balanced mass-energy process. This review aimed to help researchers select the most suitable analytical technique with which to investigate biomass feedstocks with recalcitrant natures.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departament of Biotechnology, Lorena Engineering School, University of São Paulo (USP),12600-970, Lorena, SP, Brazil.
| | - Bruna Green Rodrigues
- Departament of Biotechnology, Lorena Engineering School, University of São Paulo (USP),12600-970, Lorena, SP, Brazil
| | - Eliana Vieira Canettieri
- Chemistry and Energy Department, Guaratinguetá Engineering Faculty, São Paulo State University (UNESP), 12516-410, Guaratinguetá, SP, Brazil
| | - Ernesto Acosta Martinez
- Department of Technology, State University of Feira de Santana (UEFS), 44036-900 Feira de Santana, BA, Brazil
| | - Fernanda Palladino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
| | - Alberto Wisniewski
- Department of Chemistry, Federal University of Sergipe (UFS), 49100-000 São Cristovão, SE, Brazil
| | - Durval Rodrigues
- Department of Materials Engineering, Lorena Engineering School, University of São Paulo (USP), Lorena, SP, Brazil
| |
Collapse
|
8
|
Letourneau DR, Volmer DA. Constellation: An Open-Source Web Application for Unsupervised Systematic Trend Detection in High-Resolution Mass Spectrometry Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:382-389. [PMID: 35014266 DOI: 10.1021/jasms.1c00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing popularity of high-resolution mass spectrometry has led to many custom software solutions to process, interpret, and reveal information from high-resolution mass spectra. Although there are numerous software packages for peak-picking, calibration, and formula-finding, there are additional layers of information available when it comes to detecting repeated motifs from polymers or molecules with repeating structures or products of chemical or biochemical transformations that exhibit systematic, serial chemical changes of mass. Constellation is an open-source, Python-based web application that allows the user first to expand their high-resolution mass data into the mass defect space, after which a trend finding algorithm is used for supervised or unsupervised detection of repeating motifs. Many adjustable parameters allow the user to tailor their trend-search to target particular chemical moieties or repeating units, or search for all potential motifs within certain limits. The algorithm has a built-in optimization routine to provide a good starting point for the main trend finding parameters before user customization. Visualization tools allow interrogation of the data and any trends/patterns to a highly specific degree and save publication-quality images directly from the interface. As Constellation is deployed as a web application, it is easily used by anyone with a web browser; no software download or high-powered computer is required, as computations are performed on a remote high-powered data server run by our group.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, 12489 Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, 12489 Berlin, Germany
| |
Collapse
|
9
|
Zhang H, Zhou H. Industrial lignins: the potential for efficient removal of Cr(VI) from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10467-10481. [PMID: 34523095 DOI: 10.1007/s11356-021-16402-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Cr(VI), a serious threat to human health, widely exists in the effluents of various industrial processes. In this paper, the potential of industrial lignin for efficient removal of Cr(VI) from wastewater was systematically investigated, including pulping black liquor lignin (BLN), enzymolysis lignin (ELN), and SPORL pretreatment spent liquor (FS). The structure characterizations of three lignins were investigated by thermogravimetry (TG), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) surface area measurement, scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). Among these three lignins, BLN showed the highest adsorption amount of Cr(VI) and good selectivity in wastewater simulation. According to the Langmuir model, the calculated maximum adsorption amount of Cr(VI) on ELN, BLN, and FS was 801.57, 864.30, and 642.26 mg g-1, respectively. The adsorption of Cr(VI) by industrial lignins was a chemisorption process, during which Cr(VI) was reduced to low-toxic Cr(III). This paper provided a promising application for the effective utilization of industrial lignins.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 277590, China
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 277590, China.
| |
Collapse
|
10
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
11
|
Solubility Temperature Dependence of Bio-Based Levulinic Acid, Furfural, and Hydroxymethylfurfural in Water, Nonpolar, Polar Aprotic and Protic Solvents. Processes (Basel) 2021. [DOI: 10.3390/pr9060924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bio-based levulinic acid (LA), furfural (FF), and hydroxymethylfurfural (HMF) represent key chemical intermediates when biorefining biomass resources, i.e., either cellulose, glucose, hexoses, etc. (HMF/LA), or hemicellulose, xylose, and pentose (FF). Despite their importance, their online in situ detection by process analytical technologies (PATs), solubility, and its temperature dependence are seldom available. Herein, we report their solubility and temperature dependence by examining n-hexane, cyclohexane, benzene, toluene, 1,4-dioxane, diethyl ether, dichloromethane, tetrahydrofuran, ethyl acetate, acetone, dimethylformamide, acetonitrile, dimethyl sulfoxide, formic acid, n-butanol, n-propanol, ethanol, methanol, and water. These solvents were selected as they are the most common nonpolar, polar aprotic, and polar protic solvents. Fourier-transform infrared (FTIR) spectroscopy was applied as a fast, accurate, and sensitive method to the examined solutions or mixtures. The latter also enables operando monitoring of the investigated compounds in pressurized reactors. Selected temperatures investigated were chosen, as they are within typical operating ranges. The calculated thermodynamic data are vital for designing biorefinery process intensification, e.g., reaction yield optimization by selective compound extraction. In addition to extracting, upstream or downstream unit operations that can benefit from the results include dissolution, crystallization, and precipitation.
Collapse
|
12
|
Zhang R, Qi Y, Ma C, Ge J, Hu Q, Yue FJ, Li SL, Volmer DA. Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing. Molecules 2021; 26:molecules26010178. [PMID: 33401378 PMCID: PMC7795929 DOI: 10.3390/molecules26010178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Lignin is the second most abundant natural biopolymer, which is a potential alternative to conventional fossil fuels. It is also a promising material for the recovery of valuable chemicals such as aromatic compounds as well as an important biomarker for terrestrial organic matter. Lignin is currently produced in large quantities as a by-product of chemical pulping and cellulosic ethanol processes. Consequently, analytical methods are required to assess the content of valuable chemicals contained in these complex lignin wastes. This review is devoted to the application of mass spectrometry, including data analysis strategies, for the elemental and structural elucidation of lignin products. We describe and critically evaluate how these methods have contributed to progress and trends in the utilization of lignin in chemical synthesis, materials, energy, and geochemistry.
Collapse
Affiliation(s)
- Ruochun Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
- Correspondence: ; Fax: +86-022-27405051
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Qiaozhuan Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Dietrich A. Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany;
| |
Collapse
|