1
|
Zhang Y, Wang X, Wang Z, Liu L, He X, Ji H. Recent advances in tailoring the microenvironment of Pd-based catalysts for enhancing the performance in the direct synthesis of hydrogen peroxide. Dalton Trans 2024. [PMID: 39377764 DOI: 10.1039/d4dt02460e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Hydrogen peroxide (H2O2) is a valuable clean chemical, which is widely applied in modern industrial production. In the past few decades, H2O2 has been mainly produced industrially by the anthraquinone method, but the process is complicated and energy consuming, which is only economical for large-scale production and is harmful to the environment. The direct synthesis of H2O2 is considered a promising process to replace the anthraquinone method with high atomic economy, no hazardous by-products, and convenient operation, which has attracted much attention. In this review, we systematically present the recent advances in tuning the microenvironment of Pd-based catalysts for enhancing the performance of the direct synthesis of H2O2, including the modulation of active sites and support, from the viewpoint of the reaction mechanism. Finally, a summary and perspective on the most pressing issues and associated untapped research prospects with the direct synthesis of H2O2 are discussed. The purpose of this review is to provide in-depth insights and guidelines to promote the development of novel catalysts for the direct synthesis of H2O2.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Xilun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ziyue Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Liyang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Xiaohui He
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
- Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals, Guangzhou 510275, China
| | - Hongbing Ji
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
2
|
Usoltsev O, Stoian D, Skorynina A, Kozyr E, Njoroge PN, Pellegrini R, Groppo E, van Bokhoven JA, Bugaev A. Restructuring of Palladium Nanoparticles during Oxidation by Molecular Oxygen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401184. [PMID: 38884188 DOI: 10.1002/smll.202401184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/02/2024] [Indexed: 06/18/2024]
Abstract
An interplay between Pd and PdO and their spatial distribution inside the particles are relevant for numerous catalytic reactions. Using in situ time-resolved X-ray absorption spectroscopy (XAS) supported by theoretical simulations, a mechanistic picture of the structural evolution of 2.3 nm palladium nanoparticles upon their exposure to molecular oxygen is provided. XAS analysis revealed the restructuring of the fcc-like palladium surface into the 4-coordinated structure of palladium oxide upon absorption of oxygen from the gas phase and formation of core@shell Pd@PdO structures. The reconstruction starts from the low-coordinated sites at the edges of palladium nanoparticles. Formation of the PdO shell does not affect the average Pd‒Pd coordination numbers, since the decrease of the size of the metallic core is compensated by a more spherical shape of the oxidized nanoparticles due to a weaker interaction with the support. The metallic core is preserved below 200 °C even after continuous exposure to oxygen, with its size decreasing insignificantly upon increasing the temperature, while above 200 °C, bulk oxidation proceeds. The Pd‒Pd distances in the metallic phase progressively decrease upon increasing the fraction of the Pd oxide due to the alignment of the cell parameters of the two phases.
Collapse
Affiliation(s)
- Oleg Usoltsev
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Dragos Stoian
- The Swiss-Norwegian Beamlines (SNBL) at ESRF, BP 220, Grenoble, 38043, France
| | - Alina Skorynina
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Elizaveta Kozyr
- Department of Chemistry, INSTM and NIS Centre, University of Torino, via Quarello 15A, Turin, 10125, Italy
| | - Peter N Njoroge
- Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo, 0315, Norway
| | - Riccardo Pellegrini
- Chimet S.p.A. - Catalyst Division, Via di Pescaiola 74, Viciomaggio Arezzo, 52041, Italy
| | - Elena Groppo
- Department of Chemistry, INSTM and NIS Centre, University of Torino, via Quarello 15A, Turin, 10125, Italy
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Villigen, 5232, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| |
Collapse
|
3
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
4
|
Yang Z, Hao Z, Zhou S, Xie P, Wei Z, Zhao S, Gong F. Pd-Sn Alloy Catalysts for Direct Synthesis of Hydrogen Peroxide from H 2 and O 2 in a Microchannel Reactor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23058-23067. [PMID: 37133527 DOI: 10.1021/acsami.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Direct synthesis of hydrogen peroxide (DSHP) from H2 and O2 offers a promising alternative to the present commercial anthraquinone method, but it still faces the challenges of low H2O2 productivity, low stability of catalysts, and high risk of explosion. Herein, by loading in a microchannel reactor, the as-synthesized Pd-Sn alloy materials exhibit high catalytic activity for H2O2 production, presenting a H2O2 productivity of 3124 g kgPd-1 h-1. The doped Sn atoms on the surface of Pd not only facilitate the release of H2O2 but also effectively slow down the deactivation of catalysts. Theoretical calculations demonstrate that the Pd-Sn alloy surface has the property of antihydrogen poisoning, showing higher activity and stability than pure Pd catalysts. The deactivation mechanism of the catalyst was elucidated, and the online reactivation method was developed. In addition, we show that the long-life Pd-Sn alloy catalyst can be achieved by supplying an intermittent flow of hydrogen gas. This work provides guidance on how to prepare high performance and stable Pd-Sn alloy catalysts for the continuous and direct synthesis of H2O2.
Collapse
Affiliation(s)
- Zaiyong Yang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 53004, China
| | - Zhiheng Hao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shunxin Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Peng Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 53004, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 53004, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 53004, China
| | - Fuzhong Gong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Layered Pd oxide on PdSn nanowires for boosting direct H 2O 2 synthesis. Nat Commun 2022; 13:6072. [PMID: 36241626 PMCID: PMC9568611 DOI: 10.1038/s41467-022-33757-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Hydrogen peroxide (H2O2) has the wide range of applications in industry and living life. However, the development of the efficient heterogeneous catalyst in the direct H2O2 synthesis (DHS) from H2 and O2 remains a formidable challenge because of the low H2O2 producibility. Herein, we develop a two-step approach to prepare PdSn nanowire catalysts, which comprises Pd oxide layered on PdSn nanowires (PdL/PdSn-NW). The PdL/PdSn-NW displays superior reactivity in the DHS at zero Celcius, presenting the H2O2 producibility of 528 mol kgcat−1·h−1 and H2O2 selectivity of >95%. A layer of Pd oxide on the PdSn nanowire generates bi-coordinated Pd, leading to the different adsorption behaviors of O2, H2 and H2O2 on the PdL/PdSn-NW. Furthermore, the weak adsorption of H2O2 on the PdL/PdSn-NW contributes to the low activation energy and high H2O2 producibility. This surface engineering approach, depositing metal layer on metal nanowires, provides a new insight in the rational designing of efficient catalyst for DHS. The development of the efficient catalyst in the direct H2O2 synthesis (DHS) from H2 and O2 remains a formidable challenge. Here, the authors develop a two-step approach to prepare a layer of Pd oxide on PdSn nanowires which displays superior reactivity in the DHS at zero Celcius.
Collapse
|
6
|
Treu P, Sarma BB, Grunwaldt JD, Saraçi E. Oxidative cleavage of vicinal diols catalyzed by monomeric Fe‐sites inside MFI zeolite. ChemCatChem 2022. [DOI: 10.1002/cctc.202200993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Philipp Treu
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Catalysis Research and Technology GERMANY
| | - Bidyut Bikash Sarma
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Catalysis Research and Technology GERMANY
| | - Jan-Dierk Grunwaldt
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute for Chemical Technology and Polymer Chemistry GERMANY
| | - Erisa Saraçi
- Karlsruhe Institute of Technology Institute for Catalysis Science and Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen GERMANY
| |
Collapse
|
7
|
Fu L, Liu S, Deng Y, He H, Yuan S, Ouyang L. Fabrication of the PdAu Surface Alloy on an Ordered Intermetallic Au 3Cu Core for Direct H 2O 2 Synthesis at Ambient Pressure. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lian Fu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shijie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanbo Deng
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
You H, Fu C, Wang M, Yang C, Shi Y, Pan H, Lin Q. Pd/CNT with controllable Pd particle size and hydrophilicity for improved direct synthesis efficiency of H 2O 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison of Pd catalyst performance before and after N/O doping. Schematic diagram of anchoring Pd nanoparticles on the surface of N and O doped CNT.
Collapse
Affiliation(s)
- Huan You
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Chengbing Fu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Meng Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Chunliang Yang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Yongyong Shi
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Hongyan Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- Guizhou phosphating group liability co. LTD, Guiyang 550005, China
- State key laboratory of efficient utilization for low grade phosphate rock and its associated resources, Guiyang, Guizhou 550005, China
| | - Qian Lin
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| |
Collapse
|
9
|
Wu Q, Zhou S, Fu C, Zhang J, Chen B, Pan H, Lin Q. Direct synthesis of H 2O 2 over Pd–M@HCS (M = Sn, Fe, Co, or Ni): effects of non-noble metal M on the electronic state and particle size of Pd. NEW J CHEM 2022. [DOI: 10.1039/d2nj01074g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct synthesis of H2O2 in a yolk–shell structure assisted by M (M = Fe,Co,Ni,Sn) metal doping.
Collapse
Affiliation(s)
- Quansheng Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Songhua Zhou
- Guizhou Tianfu Chemical Co.,LTD, Qiannan, Guizhou 558000, China
| | - Chengbing Fu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Jiesong Zhang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Bo Chen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Hongyan Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- State key laboratory of efficient utilization for low grade phosphate rock and its associated resources, Guiyang, Guizhou 550005, China
| | - Qian Lin
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, and Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| |
Collapse
|
10
|
Ricciardulli T, Adams JS, DeRidder M, van Bavel AP, Karim AM, Flaherty DW. H2O-assisted O2 reduction by H2 on Pt and PtAu bimetallic nanoparticles: Influences of composition and reactant coverages on kinetic regimes, rates, and selectivities. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Sandri F, Danieli M, Zecca M, Centomo P. Comparing Catalysts of the Direct Synthesis of Hydrogen Peroxide in Organic Solvent: is the Measure of the Product an Issue? ChemCatChem 2021. [DOI: 10.1002/cctc.202100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Francesco Sandri
- Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Mattia Danieli
- Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Marco Zecca
- Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Paolo Centomo
- Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
12
|
Banisalman MJ, Lee HW, Koh H, Han SS. Atomistic Insights into H 2O 2 Direct Synthesis of Ni-Pt Nanoparticle Catalysts under Water Solvents by Reactive Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17577-17585. [PMID: 33835774 DOI: 10.1021/acsami.1c01947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In computational catalysis, density-functional theory (DFT) calculations are usually utilized, although they suffer from high computational costs. Thus, it would be challenging to explicitly predict the catalytic properties of nanoparticles (NPs) at the nanoscale under solvents. Using molecular dynamics (MD) simulations with a reactive force field (ReaxFF), we investigated the catalytic performance of Ni-Pt NPs for the direct synthesis of hydrogen peroxide (H2O2), in which water solvents were explicitly considered along with the effects of the sizes (1.5, 2.0, 3.0, and 3.5 nm) and compositions (Ni90Pt10, Ni80Pt20, and Ni50Pt50) of the NPs. Among the Ni-Pt NPs, 3.0 nm NPs show the highest activity and selectivity for the direct synthesis of H2O2, revealing that the catalytic performance is not well correlated with the surface areas of NPs. The superior catalytic performance results from the high H2 dissociation and low O2 dissociation properties, which are correlated with the numbers of NiNiPt-fcc and NiNi-bridge sites on the surface of Ni-Pt NPs, respectively. The ReaxFF-MD simulations propose the optimum composition (Ni80Pt20) of 3.0 nm Ni-Pt NPs, which is also explained by the numbers of NiNiPt-fcc and NiNi-bridge sites. Furthermore, from the ReaxFF-MD simulations, the direct synthesis of H2O2 for the Ni-Pt NPs can be achieved not only with the Langmuir-Hinshelwood mechanism, which has been conventionally considered, but also with the water-induced mechanism, which is unlikely to occur on pure Pd and Pd-based alloy catalysts; these results are supported by DFT calculations. These results reveal that the ReaxFF-MD method provides significant information for predicting the catalytic properties of NPs, which could be difficult to provide with DFT calculations; thus, it can be a useful framework for the design of nanocatalysts through complementation with a DFT method.
Collapse
Affiliation(s)
- Mosab Jaser Banisalman
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Woo Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Heeyeun Koh
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sang Soo Han
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
13
|
Ricciardulli T, Gorthy S, Adams JS, Thompson C, Karim AM, Neurock M, Flaherty DW. Effect of Pd Coordination and Isolation on the Catalytic Reduction of O 2 to H 2O 2 over PdAu Bimetallic Nanoparticles. J Am Chem Soc 2021; 143:5445-5464. [PMID: 33818086 DOI: 10.1021/jacs.1c00539] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The direct synthesis of hydrogen peroxide (H2 + O2 → H2O2) may enable low-cost H2O2 production and reduce environmental impacts of chemical oxidations. Here, we synthesize a series of Pd1Aux nanoparticles (where 0 ≤ x ≤ 220, ∼10 nm) and show that, in pure water solvent, H2O2 selectivity increases with the Au to Pd ratio and approaches 100% for Pd1Au220. Analysis of in situ XAS and ex situ FTIR of adsorbed 12CO and 13CO show that materials with Au to Pd ratios of ∼40 and greater expose only monomeric Pd species during catalysis and that the average distance between Pd monomers increases with further dilution. Ab initio quantum chemical simulations and experimental rate measurements indicate that both H2O2 and H2O form by reduction of a common OOH* intermediate by proton-electron transfer steps mediated by water molecules over Pd and Pd1Aux nanoparticles. Measured apparent activation enthalpies and calculated activation barriers for H2O2 and H2O formation both increase as Pd is diluted by Au, even beyond the complete loss of Pd-Pd coordination. These effects impact H2O formation more significantly, indicating preferential destabilization of transition states that cleave O-O bonds reflected by increasing H2O2 selectivities (19% on Pd; 95% on PdAu220) but with only a 3-fold reduction in H2O2 formation rates. The data imply that the transition states for H2O2 and H2O formation pathways differ in their coordination to the metal surface, and such differences in site requirements require that we consider second coordination shells during the design of bimetallic catalysts.
Collapse
Affiliation(s)
- Tomas Ricciardulli
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sahithi Gorthy
- Department of Chemical and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Coogan Thompson
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Matthew Neurock
- Department of Chemical and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Ramos RCR, Regulacio MD. Controllable Synthesis of Bimetallic Nanostructures Using Biogenic Reagents: A Green Perspective. ACS OMEGA 2021; 6:7212-7228. [PMID: 33778236 PMCID: PMC7992060 DOI: 10.1021/acsomega.1c00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
Bimetallic nanostructures are emerging as a significant class of metal nanomaterials due to their exceptional properties that are useful in various areas of science and technology. When used for catalysis and sensing applications, bimetallic nanostructures have been noted to exhibit better performance relative to their monometallic counterparts owing to synergistic effects. Furthermore, their dual metal composition and configuration can be modulated to achieve optimal activity for the desired functions. However, as with other nanostructured metals, bimetallic nanostructures are usually prepared through wet chemical routes that involve the use of harsh reducing agents and hazardous stabilizing agents. In response to intensifying concerns over the toxicity of chemicals used in nanomaterial synthesis, the scientific community has increasingly turned its attention toward environmentally and biologically compatible reagents that can enable green and sustainable nanofabrication processes. This article aims to provide an evaluation of the green synthetic methods of constructing bimetallic nanostructures, with emphasis on the use of biogenic resources (e.g., plant extracts, DNA, proteins) as safe and practical reagents. Special attention is devoted to biogenic synthetic protocols that demonstrate controllable nanoscale features, such as size, composition, morphology, and configuration. The potential use of these biogenically prepared bimetallic nanostructures as catalysts and sensors is also discussed. It is hoped that this article will serve as a valuable reference on bimetallic nanostructures and will help fuel new ideas for the development of more eco-friendly strategies for the controllable synthesis of various types of nanostructured bimetallic systems.
Collapse
Affiliation(s)
- Rufus
Mart Ceasar R. Ramos
- Natural
Sciences Research Institute, University
of the Philippines Diliman, Quezon City 1101, Philippines
| | - Michelle D. Regulacio
- Natural
Sciences Research Institute, University
of the Philippines Diliman, Quezon City 1101, Philippines
- Institute
of Chemistry, University of the Philippines
Diliman, Quezon
City 1101, Philippines
| |
Collapse
|
15
|
Trinkies LL, Düll A, Deschner BJ, Stroh A, Kraut M, Dittmeyer R. Simulation of Fluid Flow During Direct Synthesis of H
2
O
2
in a Microstructured Membrane Reactor. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Laura L. Trinkies
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Andrea Düll
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Benedikt J. Deschner
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Alexander Stroh
- Karlsruhe Institute of Technology Institute of Fluid Mechanics (ISTM) Kaiserstraße 10 76131 Karlsruhe Germany
| | - Manfred Kraut
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Roland Dittmeyer
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
16
|
Naina VR, Wang S, Sharapa DI, Zimmermann M, Hähsler M, Niebl-Eibenstein L, Wang J, Wöll C, Wang Y, Singh SK, Studt F, Behrens S. Shape-Selective Synthesis of Intermetallic Pd 3Pb Nanocrystals and Enhanced Catalytic Properties in the Direct Synthesis of Hydrogen Peroxide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03561] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanitha Reddy Naina
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552 Madhya Pradesh, India
| | - Sheng Wang
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Dmitry I. Sharapa
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Zimmermann
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Hähsler
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Lukas Niebl-Eibenstein
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Junjun Wang
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sanjay Kumar Singh
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552 Madhya Pradesh, India
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Science, Karlsruher Institut für Technologie, Engesserstr. 20, D-76131 Karlsruhe, Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Liebertseder M, Wang D, Cavusoglu G, Casapu M, Wang S, Behrens S, Kübel C, Grunwaldt JD, Feldmann C. NaCl-template-based synthesis of TiO 2-Pd/Pt hollow nanospheres for H 2O 2 direct synthesis and CO oxidation. NANOSCALE 2021; 13:2005-2011. [PMID: 33444428 DOI: 10.1039/d0nr08871d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
TiO2 hollow nanosphere (HNS) are prepared via NaCl templates in a one-pot approach. The NaCl templates are realized by solvent/anti-solvent strategies and coated with TiO2via controlled hydrolysis of Ti-alkoxides. The NaCl template can be easily removed by washing with water, and the TiO2 HNS are finally impregnated with Pd/Pt. Electron microscopy shows TiO2 HNS with an outer diameter of 140-180 nm, an inner cavity of 80-100 nm, and a wall thickness of 30-40 nm. The TiO2 HNS exhibit high surface area (up to 370 m2 g-1) and pore volume (up to 0.28 cm3 g-1) with well-distributed small Pd/Pt nanoparticles (Pt: 3-4 nm, Pd: 3-7 nm). H2O2 direct synthesis (room temperature, liquid phase) and CO oxidation (up to 300 °C, gas phase) are used to probe the catalytic properties and result in a good stability of the HNS structure as well as a promising performance with a H2O2 selectivity of 63% and a productivity of 3390 mol kgPd-1 h-1 (TiO2-Pd HNS, 5 wt%) as well as CO oxidation light-out temperatures of 150 °C (TiO2-Pt HNS, 0.7 wt%).
Collapse
Affiliation(s)
- Mareike Liebertseder
- Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Facile Direct Seed-Mediated Growth of AuPt Bimetallic Shell on the Surface of Pd Nanocubes and Application for Direct H2O2 Synthesis. Catalysts 2020. [DOI: 10.3390/catal10060650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The selective enhancement of catalytic activity is a challenging task, as catalyst modification is generally accompanied by both desirable and undesirable properties. For example, in the case of the direct synthesis of hydrogen peroxide, Pt on Pd improves hydrogen conversion, but lowers hydrogen peroxide selectivity, whereas Au on Pd enhances hydrogen peroxide selectivity but decreases hydrogen conversion. Toward an ideal catalytic property, the development of a catalyst that is capable of improving H-H dissociation for increasing H2 conversion, whilst suppressing O-O dissociation for high H2O2 selectivity would be highly beneficial. Pd-core AuPt-bimetallic shell nanoparticles with a nano-sized bimetallic layer composed of Au-rich or Pt-rich content with Pd cubes were readily prepared via the direct seed-mediated growth method. In the Pd-core AuPt-bimetallic shell nanoparticles, Au was predominantly located on the {100} facets of the Pd nanocubes, whereas Pt was deposited on the corners of the Pd nanocubes. The evaluation of Pd-core AuPt-bimetallic shell nanoparticles with varying Au and Pt contents revealed that Pd-core AuPt-bimetallic shell that was composed of 2.5 mol% Au and 5 mol% Pt, in relation to Pd, exhibited the highest H2O2 production rate (914 mmol H2O2 gmetal−1 h−1), due to the improvement of both H2O2 selectivity and H2 conversion.
Collapse
|
19
|
Doronkin DE, Wang S, Sharapa DI, Deschner BJ, Sheppard TL, Zimina A, Studt F, Dittmeyer R, Behrens S, Grunwaldt JD. Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H 2O 2 synthesis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00553c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of mono- and bimetallic supported Pd, PdSn, and PdIn NPs was monitored with a combination of techniques during continuous H2O2 synthesis with H2O2 production rates up to 580 mmolH2O2 gcat−1 h−1.
Collapse
|