1
|
Kumar S, Mehdi SMZ, Seo Y. 1D MXenes: Synthesis, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405576. [PMID: 39344155 DOI: 10.1002/smll.202405576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
The fascinating properties and versatile nature of 2D MXenes have generated significant interest in the scientific community. This has led to extensive research on expanding these materials into 1D and 0D forms. This review investigates the synthesis, properties, and applications of 1D MXenes, elucidating their potential across various fields. 1D MXenes, including nanowires, nanoribbons, nanorods, and nanotubes, inherit the remarkable properties of their 2D counterparts while also exhibiting unique anisotropic characteristics that enhance their performance in various applications. The review explores various methods for synthesizing 1D MXenes and examines their structural, electronic, and optical properties. The transition from 2D to 1D results in MXenes that offer superior properties, which are advantageous for various next-generation systems. The increased aspect ratio and surface area of 1D MXenes broaden their usage in energy storage, photothermal therapy, oxygen evolution reactions (OER), hydrogen evolution reactions (HER), oxygen reduction reactions (ORR), microwave absorption, filtration membranes, gas sensors, metal detection, etc. The review also addresses the challenges associated with 1D MXenes, such as limited synthesis methods, scalable production, size customization, preservation of structural integrity, and stability. Furthermore, potential opportunities and future directions in the field of 1D MXenes have also been proposed.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| | - Syed Muhammad Zain Mehdi
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| | - Yongho Seo
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
2
|
He L, Zhuang H, Fan Q, Yu P, Wang S, Pang Y, Chen K, Liang K. Advances and challenges in MXene-based electrocatalysts: unlocking the potential for sustainable energy conversion. MATERIALS HORIZONS 2024; 11:4239-4255. [PMID: 39188198 DOI: 10.1039/d4mh00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
MXenes, a novel class of two-dimensional materials, have garnered significant attention for their promising electrocatalytic properties in various energy conversion applications such as water splitting, fuel cells, metal-air batteries, and nitrogen reduction reactions. Their excellent electrical conductivity, high specific surface area, and versatile surface chemistry enable exceptional catalytic performance. This review highlights recent advancements in the design and application strategies of MXenes as electrocatalysts, focusing on key reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and nitrogen reduction reaction (NRR). We discuss the tunability of MXenes' layered structures and surface properties through surface modification, MXene lattice substitution, defect and morphology engineering, and heterostructure construction. Despite the considerable progress, MXenes face challenges such as restacking during catalysis, stability issues, and difficulties in large-scale production. Addressing these challenges through innovative engineering approaches and advancing industrial synthesis techniques is crucial for the broader application of MXene-based materials. Our review underscores the potential of MXenes in transforming electrocatalytic processes and highlights future research directions to optimize their catalytic efficiency and stability.
Collapse
Affiliation(s)
- Lei He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Haizheng Zhuang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Ping Yu
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Shengchao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yifan Pang
- Department of Materials Science and Engineering, the Ohio State University, Columbus, OH 43210, USA
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| |
Collapse
|
3
|
Otgonbayar Z, Oh WC. MXene-based nanocomposite for the photocatalytic CO2 reduction: Comprehensive review. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Rahman UU, Humayun M, Ghani U, Usman M, Ullah H, Khan A, El-Metwaly NM, Khan A. MXenes as Emerging Materials: Synthesis, Properties, and Applications. Molecules 2022; 27:4909. [PMID: 35956859 PMCID: PMC9370057 DOI: 10.3390/molecules27154909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023] Open
Abstract
Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for the solution of energy- and environmental-related problems. It is seen that the energy conversion and storage capacity of MXenes can be enhanced by changing the material dimensions, chemical composition, structure, and surface chemistry. Hence, it is also essential to understand how one can easily improve the structure-property relationship from an applied point of view. In the current review, we reviewed the fabrication, properties, and potential applications of MXenes. In addition, various properties of MXenes such as structural, optical, electrical, thermal, chemical, and mechanical have been discussed. Furthermore, the potential applications of MXenes in the areas of photocatalysis, electrocatalysis, nitrogen fixation, gas sensing, cancer therapy, and supercapacitors have also been outlooked. Based on the reported works, it could easily be observed that the properties and applications of MXenes can be further enhanced by applying various modification and functionalization approaches. This review also emphasizes the recent developments and future perspectives of MXenes-based composite materials, which will greatly help scientists working in the fields of academia and material science.
Collapse
Affiliation(s)
- Ubaid Ur Rahman
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan; (U.U.R.); (U.G.); (A.K.)
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, School of Optical & Electronics Information, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Usman Ghani
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan; (U.U.R.); (U.G.); (A.K.)
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Habib Ullah
- Department of Materials Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Department of Chemistry, University of Sialkot, Sialkot 51040, Pakistan
| | - Adil Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan; (U.U.R.); (U.G.); (A.K.)
| | - Nashwa M. El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan; (U.U.R.); (U.G.); (A.K.)
| |
Collapse
|
5
|
Yang Z, Wang J, Wang J, Li M, Cheng Q, Wang Z, Wang X, Li J, Li Y, Zhang G. 2D WO 3-x Nanosheet with Rich Oxygen Vacancies for Efficient Visible-Light-Driven Photocatalytic Nitrogen Fixation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1178-1187. [PMID: 35020399 DOI: 10.1021/acs.langmuir.1c02862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxygen vacancy modulation holds great promise for enhancing the photocatalytic activity for efficient nitrogen fixation under mild conditions. In this work, the two-dimensional WO3-x nanosheets with rich oxygen vacancies were prepared using solvothermal synthesis. The WO3-x nanosheets (rich oxygen vacancies) display nice photocatalytic activity for N2 reduction to ammonia with a high yield rate of 82.41 μmol·gcat-1·h-1 under irradiation of visible light (420 nm), which is 3.59 times higher than that of the WO3-x nanoparticles (poor oxygen vacancies). Electron spin resonance (ESR), N2 adsorption-desorption isotherms, and transient photocurrent responses in the N2 or Ar atmosphere experiments proved that the rich oxygen vacancies, which are induced by the nanosheet structure, could serve as active sites for the chemisorption of N2 and facilitate the electron transfer from unsaturated sites to activated N2. Moreover, based on the analysis of banding energy, the oxygen vacancies not only boosted the ability of visible light harvesting but also elevated the defect energy level to the Fermi level, further inhibiting the defect relaxation effect. The findings offer an insight into the design of the efficient photocatalysts via structure engineering and defect engineering for photocatalytic N2 fixation.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Jiquan Wang
- Hubei Sheng Engineering Consultation Co., Ltd., Wuhan 430071, China
| | - Junting Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qiang Cheng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhuangzhuang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiaotian Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Jiaming Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
López M, Morales-García Á, Viñes F, Illas F. Thermodynamics and Kinetics of Molecular Hydrogen Adsorption and Dissociation on MXenes: Relevance to Heterogeneously Catalyzed Hydrogenation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Martí López
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain
| |
Collapse
|
7
|
Ma J, Jiang Q, Zhou Y, Chu W, Perathoner S, Jiang C, Wu KH, Centi G, Liu Y. Tuning the Chemical Properties of Co-Ti 3 C 2 T x MXene Materials for Catalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007509. [PMID: 34085770 DOI: 10.1002/smll.202007509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Indexed: 06/12/2023]
Abstract
MXenes, a novel family of 2D materials, are energy materials that have gained considerable attention, particularly for their catalytic applications in emerging areas such as CO2 and N2 hydrogenation. Herein, for the first time, it is shown that the surface reducibility of Ti3 C2 Tx MXene can be tuned by N doping, which induces a change in the catalytic properties of supported Co nanoparticles. Pristine Co-Ti3 C2 Tx MXene favors CO production during CO2 hydrogenation, whereas CH4 production is favored when the MXene is subjected to simple N doping. X-ray photoelectron spectroscopy and transmission electron microscopy (TEM) reveal that surface rutile TiO2 nanoparticles appear on the Ti3 C2 Tx support upon N doping, which interact strongly with the supported Co nanoparticles. This interaction alters the reducibility of the supported Co nanoparticles at the interface with the TiO2 nanoparticles, shifting the product selectivity from CO to CH4 . This study successfully showcases a practical strategy, based on surface chemistry modulation of 2D MXenes, for regulating product distribution in CO2 hydrogenation.
Collapse
Affiliation(s)
- Jun Ma
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qian Jiang
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yanan Zhou
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Chu
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Siglinda Perathoner
- Department ChimBioFarAm, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Chengfa Jiang
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kuang-Hsu Wu
- School of Chemical Engineering, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Gabriele Centi
- Department ChimBioFarAm, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
8
|
Li X, Cao Y, Xu T, Luo Y, Li T, Zhao H, Lu S, Shi X, Asiri AM, Hu J, Liu Q, Sun X. Ag@TiO
2
as an Efficient Electrocatalyst for N
2
Fixation to NH
3
under Ambient Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202101069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xue Li
- School of Physics and Electrical Engineering Chongqing Normal University
| | - Yang Cao
- School of Physics and Electrical Engineering Chongqing Normal University
| | - Tong Xu
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054
| | - Haitao Zhao
- Materials and Interfaces Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 Guangdong China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 Henan China
| | - Xifeng Shi
- College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan 250014 Shandong China
| | - Abdullah M. Asiri
- Chemistry Department Faculty of Science & Center of Excellence for Advanced Materials Research King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Jianming Hu
- School of Physics and Electrical Engineering Chongqing Normal University
| | - Qian Liu
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054
| |
Collapse
|