1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Ruiz D, Morales K, Mäki-Arvela P, Chimentão RJ, Murzin DY. Direct Reductive Amination of HMF to 5-(Aminomethyl)-2-furanmethanol Using Supported Iridium-based Catalysts. Chempluschem 2024:e202400453. [PMID: 39137129 DOI: 10.1002/cplu.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
In this work, partial reductive amination of 5-hydroxymethylfurfural (HMF) with gaseous ammonia over iridium supported on γ-Al2O3, TiO2, SiO2 and carbon has been studied. The influence of the support and pressure was investigated in the valorization under mild conditions of HMF to 5-(aminomethyl)-2-furanmethanol (AMFM). The catalysts were characterized by TEM, SEM-EDS, N2 sorption Isotherms, TGA, CO-Chemisorption, TPR, XRD, NH3-TPD, ICP-AES and XPS. The maximum activity and high rates were obtained for all catalytic systems. At 50 minutes of the reaction the Ir/C catalyst achieved 93 % of conversion and exhibited the highest yield and selectivity of 92 % and 99 % respectively, to the desired product 5-(aminomethyl)-2-furanmethanol. The main properties that influence activity and selectivity are related to the amount of iridium on the surface and catalyst acidity. After the third cycle, 63 % and 59 % of selectivity and yield to AMFM respectively at 93 % of conversion were obtained.
Collapse
Affiliation(s)
- Doris Ruiz
- Physical Chemistry Department, Faculty of Chemical Sciences, University of Concepcion, Casilla 160-C, Concepción, Chile
| | - Karen Morales
- Physical Chemistry Department, Faculty of Chemical Sciences, University of Concepcion, Casilla 160-C, Concepción, Chile
| | - Päivi Mäki-Arvela
- Johan Gadolin Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Turku/Åbo, Finland
| | - Ricardo J Chimentão
- Physical Chemistry Department, Faculty of Chemical Sciences, University of Concepcion, Casilla 160-C, Concepción, Chile
| | - Dmitry Yu Murzin
- Johan Gadolin Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Turku/Åbo, Finland
| |
Collapse
|
3
|
Buta JG, Dame B, Ayala T. Nitrogen-doped ordered mesoporous carbon supported ruthenium metallic nanoparticles: Opportunity for efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran by catalytic transfer hydrogenation. Heliyon 2024; 10:e26690. [PMID: 38455557 PMCID: PMC10918172 DOI: 10.1016/j.heliyon.2024.e26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
One of the most promising solutions to the current energy crisis is an efficient catalytic transformation of abundant low-cost renewable raw biomass into high-quality biofuel. Herein, a highly effective catalyst was constructed systematically for the selective synthesis of 2,5-dimethylfuran (DMF) biofuel from biomass-derived 5-hydroxymethylfurfural (HMF) via green catalytic transfer hydrogenolysis (CTH) using a nitrogen-doped ordered mesoporous carbon (N-CMK-1) decorated ruthenium (Ru)-based catalyst in i-propanol as hydrogen source. The structures and properties of different catalysts were characterized by different characterization techniques such as FTIR, XRD, N2-sorption, CO2-sorption, TGA, TEM, ICP-AES, CHNO analysis, and acid-base back titration. A complete HMF conversion with a high DMF yield of 88% was achieved under optimized reaction conditions. Regarding substrate conversion and product yield, the influence of reaction temperature, time, and hydrogen donors was thoroughly investigated. The nitrogen-promoted carbon support enhanced the dispersion of Ru due to the formation of appropriate basic site density which could efficiently promote the activation of alcohol hydroxyl in i-propanol and subsequent release of active hydrogen species. In the meantime, highly dispersed surface Ru nanoparticles (NPs) were beneficial for hydrogen transfer and activation of both carbonyl and hydroxyl groups in HMF. Moreover, Arrhenius kinetic analysis was studied by identifying 5-methyl furfural (5-MF) and 2,5-bishydroxymethylfuran (BHMF) as two key intermediates that dominate a distinct reaction pathway during hydrogenolysis of HMF to DMF via CTH. Furthermore, high stability without obvious loss of activity after three consecutive cycles was observed in a fabricated N-CMK-1 decorated Ru-based catalyst as a result of superior metal-support interaction and the mesoporous framework nature of the catalyst. These findings would not only offer a robust catalyst synthetic approach but also open a new avenue for the exploitation of biomass to specialty chemicals and advanced biofuels.
Collapse
Affiliation(s)
- Jibril Goli Buta
- School of Mechanical, Chemical and Materials Engineering, Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Bayisa Dame
- School of Mechanical, Chemical and Materials Engineering, Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Tariku Ayala
- School of Mechanical, Chemical and Materials Engineering, Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
4
|
Li ZF, Li YT, Zhang Q, Hu TL. 2-Methylimidazole-modulated 2D Cu metal-organic framework for 5-hydroxymethylfurfural hydrodeoxygenation. Dalton Trans 2024; 53:1698-1705. [PMID: 38169009 DOI: 10.1039/d3dt03870j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Preparation of the high value-added chemical 2,5-dimethylfuran (2,5-DMF) from the biomass-derived platform molecule 5-hydroxymethylfurfural (HMF) is of great significance in the preparation of biofuels. Here, a bottom-up strategy was used to prepare a metal-organic framework (MOF) material with a two-dimensional nanosheet morphology, named CPM, in which an additive 2-methylimidazole was introduced into the hydrothermal process of Cu2+ ions and terephthalic acid. Subsequently, CPM-700 prepared by heat treatment under an inert atmosphere showed excellent catalytic performance in the reaction of HMF hydrodeoxygenation to 2,5-DMF. The materials before and after pyrogenation were characterized by PXRD, XPS, TEM, N2 adsorption and desorption and so on. It was confirmed that compared with the catalyst derived from the cubic MOF material self-assembled by Cu2+ and terephthalic acid, the morphology of 2D nanosheets was beneficial for the reaction of HMF to 2,5-DMF. Combined with the experimental data, the possible reaction path of 2,5-DMF preparation from HMF is that 2,5-dihydroxymethylfuran was formed by hydrogenation of the aldehyde group on the furan ring, and then 2,5-DMF was obtained by hydrogenolysis. This paper provides an effective route for 2D MOF-derived catalytic materials in the selective hydrogenation of HMF.
Collapse
Affiliation(s)
- Zhuo-Fei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yan-Ting Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Gao Z, Wang M, Shang N, Gao W, Cheng X, Gao S, Gao Y, Wang C. Highly dispersed Co anchored on Ce-doped hydroxyapatite as a dual-functional catalyst for selective hydrogenolysis of 5-hydroxymethylfurfural. Dalton Trans 2023; 52:11076-11084. [PMID: 37525869 DOI: 10.1039/d3dt01819a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Hydrodeoxygenation (HDO) is an indispensable approach to produce renewable biofuels and value-added chemicals using natural biomass and its derivatives. 2,5-Dimethylfuran (DMF) is considered to be a very promising liquid biofuel, and it can be fabricated by HDO of the biomass derivative 5-hydroxymethylfurfural (HMF). Herein, a highly efficient bifunctional catalyst, Co/HAP(Ce), was fabricated by anchoring highly dispersed Co on Ce-doped hydroxyapatite (HAP(Ce)). Co/HAP(Ce) displayed excellent HDO catalytic activity to convert HMF to DMF, and 99% HMF conversion and 96% DMF selectivity can be obtained under 150 °C, 2 MPa H2 conditions for 5 h. Density functional theory calculations revealed that H2 can be more easily activated by Co/HAP(Ce). Systematic studies confirmed that the high activity of Co/HAP(Ce) can be ascribed to the desired acid-alkali properties, highly dispersed cobalt species and strong metal-support interactions. This research provides a cost effective approach for designing efficient catalysts for HDO of biomass and its derivatives.
Collapse
Affiliation(s)
- Zhuoyou Gao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Mengying Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Wei Gao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Xiang Cheng
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Yongjun Gao
- College of Chemical and Environmental Science, Hebei University, Baoding 071000, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
6
|
Jia H, Lv Q, Xia Q, Hu W, Wang Y. Tailoring the catalytic performance of Cu/SiO2 for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to renewable fuels. Front Chem 2022; 10:979353. [PMID: 36072701 PMCID: PMC9441548 DOI: 10.3389/fchem.2022.979353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to renewable fuels such as 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF) is of significance for sustainable energy supply. For efficient catalyst design, it is important to understand the catalytic behavior and clarify the influence of physico-chemical properties of catalyst on reaction performance. Herein, to study the structure-activity relationships of monometallic Cu catalysts for HMF hydrogenolysis, a series of Cu/SiO2 catalysts with different physico-chemical properties were prepared and compared for their catalytic performance in HMF hydrogenolysis. It was found that Cu/SiO2-HT-8.5 catalyst prepared by hydrothermal method showed excellent activity in HMF hydrohydrolysis reaction. Under the optimal reaction condition, the total yield of liquid fuels reaches 91.6% with 57.1% yield of DMF and 34.5% yield of DMTHF in THF solvent. Characterizations such as XRD, H2-TPR, N2-adsorption/desorption, TEM and XPS revealed that the Cu particles in the Cu/SiO2-HT-8.5 catalyst have uniform size and high dispersion. The Cu species and the SiO2 support have relatively weak interaction and are easy to be reduced to Cu0, which makes it show excellent activity in the hydrogenolysis of HMF.
Collapse
Affiliation(s)
- Hongyan Jia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Qing Lv
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
- *Correspondence: Qineng Xia, ; Yanqin Wang,
| | - Wanpeng Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- *Correspondence: Qineng Xia, ; Yanqin Wang,
| |
Collapse
|
7
|
Chien Truong C, Kumar Mishra D, Hyeok Ko S, Jin Kim Y, Suh YW. Sustainable Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)tetrahydrofuran. CHEMSUSCHEM 2022; 15:e202200178. [PMID: 35286783 DOI: 10.1002/cssc.202200178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF), one of the most important platform molecules in biorefinery, can be directly obtained from a vast diversity of biomass materials. Owing to the reactive functional groups (-CHO and -CH2 OH) in the structure, this versatile building block undertakes several transformations to provide a wealth of high value-added products. Among numerous well-established paradigms, the catalytic hydrogenation of 5-HMF towards 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) is of great interest because this downstream diol can be exploited in a wide range of industrial applications. Not surprisingly, incessant endeavors from both academia and industry to upgrade this catalytic process have been established over the years. The main aim of this Review was to provide a comprehensive overview on the development of heterogeneous metal catalysts for the 5-HMF-to-BHMTHF transformation. Herein, the rational design and utility of hydrogenating catalysts were elaborated in many aspects including metal types (Ni, Co, Pd, Ru, Pt, and bimetals), solid supports, preparation method, recyclability, operating conditions, and reaction regime (batch and continuous flow). In addition, the assessment of cooperative catalysts to convert carbohydrates into BHMTHF under one-pot cascade, tentative mechanism, as well as prospects and challenges for the chemo-selective hydrogenation of 5-HMF were also highlighted.
Collapse
Affiliation(s)
- Cong Chien Truong
- Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Dinesh Kumar Mishra
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang Hyeok Ko
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yong Jin Kim
- Green Chemistry & Material Group, Korea Institute of Industrial Technology, Cheonan, 31056, Republic of Korea
| | - Young-Woong Suh
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
8
|
Fulignati S, Antonetti C, Tabanelli T, Cavani F, Raspolli Galletti AM. Integrated Cascade Process for the Catalytic Conversion of 5-Hydroxymethylfurfural to Furanic and TetrahydrofuranicDiethers as Potential Biofuels. CHEMSUSCHEM 2022; 15:e202200241. [PMID: 35384331 PMCID: PMC9401012 DOI: 10.1002/cssc.202200241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The depletion of fossil resources is driving the research towards alternative renewable ones. Under this perspective, 5-hydroxymethylfurfural (HMF) represents a key molecule deriving from biomass characterized by remarkable potential as platform chemical. In this work, for the first time, the hydrogenation of HMF in ethanol was selectively addressed towards 2,5-bis(hydroxymethyl)furan (BHMF) or 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) by properly tuning the reaction conditions in the presence of the same commercial catalyst (Ru/C), reaching the highest yields of 80 and 93 mol%, respectively. These diols represent not only interesting monomers but strategic precursors for two scarcely investigated ethoxylated biofuels, 2,5-bis(ethoxymethyl)furan (BEMF) and 2,5-bis(ethoxymethyl)tetrahydrofuran (BEMTHF). Therefore, the etherification with ethanol of pure BHMF and BHMTHF and of crude BHMF, as obtained from hydrogenation step, substrates scarcely investigated in the literature, was performed with several commercial heterogeneous acid catalysts. Among them, the zeolite HZSM-5 (Si/Al=25) was the most promising system, achieving the highest BEMF yield of 74 mol%. In particular, for the first time, the synthesis of the fully hydrogenated diether BEMTHF was thoroughly studied, and a novel cascade process for the tailored conversion of HMF to the diethyl ethers BEMF and BEMTHF was proposed.
Collapse
Affiliation(s)
- Sara Fulignati
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Giuseppe Moruzzi 1356124PisaItaly
| | - Claudia Antonetti
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Giuseppe Moruzzi 1356124PisaItaly
- Interuniversity Consortium for Chemical Reactivity and Catalysis (CIRCC)Via CelsoUlpiani 2770126BariItaly
| | - Tommaso Tabanelli
- Department of Industrial Chemsistry “TosoMontanari”Alma Mater Studiorum University of BolognaViale Risorgimento 440136BolognaItaly
| | - Fabrizio Cavani
- Department of Industrial Chemsistry “TosoMontanari”Alma Mater Studiorum University of BolognaViale Risorgimento 440136BolognaItaly
| | | |
Collapse
|
9
|
Xiang S, Dong L, Wang ZQ, Han X, Daemen LL, Li J, Cheng Y, Guo Y, Liu X, Hu Y, Ramirez-Cuesta AJ, Yang S, Gong XQ, Wang Y. A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nat Commun 2022; 13:3657. [PMID: 35760807 PMCID: PMC9237033 DOI: 10.1038/s41467-022-31362-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
The development of precious-metal-free catalysts to promote the sustainable production of fuels and chemicals from biomass remains an important and challenging target. Here, we report the efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran over a unique core-shell structured catalyst, Co@CoO that affords the highest productivity among all catalysts, including noble-metal-based catalysts, reported to date. Surprisingly, we find that the catalytically active sites reside on the shell of CoO with oxygen vacancies rather than the metallic Co. The combination of various spectroscopic experiments and computational modelling reveals that the CoO shell incorporating oxygen vacancies not only drives the heterolytic cleavage, but also the homolytic cleavage of H2 to yield more active Hδ- species, resulting in the exceptional catalytic activity. Co@CoO also exhibits excellent activity toward the direct hydrodeoxygenation of lignin model compounds. This study unlocks, for the first time, the potential of simple metal-oxide-based catalysts for the hydrodeoxygenation of renewable biomass to chemical feedstocks.
Collapse
Affiliation(s)
- Shuang Xiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Dong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Luke L Daemen
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yong Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohui Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongfeng Hu
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
10
|
Wang K, Wu M, Liu Y, Yang Y, Li H. Magnetic solid sulfonic acid-enabled direct catalytic production of biomass-derived N-substituted pyrroles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05828b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered nitrogen heterocyclic pyrroles have extremely high physiological activity and are widely used in medicine, agriculture, material chemistry, industry, and supramolecular chemistry. Developing a mild and eco-friendly way to synthesize...
Collapse
|
11
|
Nishimura S, Le SD, Asai Y, Takahashi N, Endo M, Ohmatsu S. Boehmite-derived aluminum oxide catalyst for a continuous intramolecular aldol condensation of 2,5-hexanedione to 3-methyl-2-cyclopentenone in a liquid-flow reactor system. CHEM LETT 2021. [DOI: 10.1246/cl.210616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shun Nishimura
- Division of Transdisciplinary Sciences, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- School of Materials Science, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Son Dinh Le
- School of Materials Science, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yusaku Asai
- Division of Transdisciplinary Sciences, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- School of Materials Science, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Natsuki Takahashi
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Maho Endo
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Shintaro Ohmatsu
- School of Materials Science, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
12
|
Insight into Biomass Upgrade: A Review on Hydrogenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF). Molecules 2021; 26:molecules26226848. [PMID: 34833940 PMCID: PMC8619504 DOI: 10.3390/molecules26226848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Recent developments in the transformation of biobased 5-hydroxymethylfurfural (HMF) into a potential liquid fuel, 2,5-dimethylfuran (DMF), are summarised. This review focuses briefly on the history of HMF conversion to DMF in terms of the feedstock used and emphasises the ideal requirements in terms of the catalytic properties needed in HMF transformation into DMF. The recent state of the art and works on HMF transformation into DMF are discussed in comparison to noble metals and non-noble metals as well as bimetallic catalysts. The effect of the support used and the reaction conditions are also discussed. The recommendations for future work and challenges faced are specified.
Collapse
|