1
|
Wang W, Chen Y, Qiao S, Zhao J, Zhao W, Wei Y, Tang Y, Liu C. Constructing Dual-Phase Co 9S 8-CoMo 2S 4 Heterostructure as an Efficient Trifunctional Electrocatalyst for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. CHEMSUSCHEM 2025; 18:e202400678. [PMID: 39177178 DOI: 10.1002/cssc.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Designing robust, efficient and inexpensive trifunctional electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is significant for rechargeable zinc-air batteries and water-splitting devices. To this end, constructing heterogenous structures based on transition metals stands out as an effective strategy. Herein, a dual-phase Co9S8-CoMo2S4 heterostructure grown on porous N, S-codoped carbon substrate (Co9S8-CoMo2S4/NSC) via a one-pot synthesis is investigated as the trifunctional ORR/OER/HER electrocatalyst. The optimized Co9S8-CoMo2S4/NSC2 exhibits that ORR has a half-wave potential of 0.86 V (vs. RHE) and the overpotentials at 10 mA cm-2 for OER and HER are 280 and 89 mV, respectively, superior to most transition-metal based trifunctional electrocatalysts reported to date. The Co9S8-CoMo2S4/NSC2-based zinc-air battery (ZAB) has a high open-circuit voltage (1.41 V), large capacity (804 mAh g-1) and highly stable cyclability (97 h at 10 mA cm-2). In addition, the prepared Co9S8-CoMo2S4/NSC2-based ZAB in series can self-drive the corresponding water-splitting device. The dual-phase Co9S8-CoMo2S4 heterostructure provides not only multi-type active sites to drive the ORR, OER and HER, but also high-speed charge transfer channels between two phases to improve the synergistic effect and reaction kinetics.
Collapse
Affiliation(s)
- Wenjie Wang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Shanshan Qiao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jing Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Wenlong Zhao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yike Wei
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanhong Tang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
García-Rodríguez M, Cazorla-Amorós D, Morallón E. Eco-Friendly Mechanochemical Synthesis of Bifunctional Metal Oxide Electrocatalysts for Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202401055. [PMID: 38924618 DOI: 10.1002/cssc.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The development of green and environmentally friendly synthesis methods of electrocatalysts is a crucial aspect in decarbonizing energy generation. In this study, eco-friendly mechanochemical synthesis of perovskite metal oxide-carbon black composites is proposed using different conditions and additives such as KOH. Furthermore, the optimization of ball milling conditions, including time and rotational speed, is studied. The mechanochemical synthesis in solid-state conditions without additives produces electrocatalysts that exhibit the highest bifunctional electrochemical activity towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, this synthesis demonstrates a lower Environmental Impact Factor (E-factor), indicating its greener nature, and due to its simplicity, it has a great potential for scalability. The obtained bifunctional electrocatalysts have been tested in a rechargeable zinc-air battery (ZAB) for 22 h with similar performance compared to the commercial catalyst (Pt/C) at significantly lower cost. These promising findings are attributed to the enhanced interaction between the perovskite metal oxide and carbon material and the improved dispersion of the perovskite metal oxide on the carbon materials.
Collapse
Affiliation(s)
- M García-Rodríguez
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|
3
|
Wang X, Huang H, Zhang H, Dong Q, Zhang W, Gao M, Li J, Chen B, Guo H, Han X. Achieving Uniform Li Deposition and Suppressed Electrolyte Flammability in Li-Metal Batteries via Designing Localized High-Concentration Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401100. [PMID: 38721947 DOI: 10.1002/smll.202401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Indexed: 08/29/2024]
Abstract
The increasing need for energy storage devices with high energy density has led to significant interest in Li-metal batteries (LMBs). However, the use of commercial electrolytes in LMBs is problematic due to their flammability, inadequate performance at low temperatures, and tendency to promote the growth of lithium dendrites and other flaws. This study introduces a localized high-concentration electrolyte (LHCE) that addresses these issues by employing non-flammable electrolyte components and incorporating carefully designed additives to enhance flame retardancy and low-temperature performance. By incorporating additives to optimize the electrolyte, it is possible to attain inorganic-dominated solid electrolyte interphases on both the cathode and anode. This achievement results in a uniform deposition of lithium, as well as the suppression of electrolyte decomposition and cathode deterioration. Consequently, this LHCE achieve over 300 stable cycles for both LiNi0.9Mn0.05Co0.05O2||Li cells and LiCoO2||Li cells, as well as 50 cycles for LiNi0.8Mn0.1Co0.1O2 (NCM811||Li) pouch cells. Furthermore, NCM811||Li cells maintain 84% discharge capacity at -20 °C, in comparison to the capacity at room temperature. The utilization of this electrolyte presents novel perspectives for the safe implementation of LMBs.
Collapse
Affiliation(s)
- Xingkai Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - He Huang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Qiujiang Dong
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Wanxing Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Meng Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Jinyang Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- National Innovation Platform for Industry-Education Integration of Energy Storage Technology Tianjin University, Tianjin, 300350, China
| | - Hao Guo
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Advanced Chemical Power Sources, Zunyi, Guizhou, 563003, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- National Innovation Platform for Industry-Education Integration of Energy Storage Technology Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Li J, Wang J, Huang H, Gao M, Wang X, Dong Q, Zhang W, Zhang S, Guo H, Han X, Hu W. Stabilization of LiCoO 2 Cathodes in High Voltage Lithium Metal Batteries Through 2-(Trifluoromethyl)Benzamide (2-TFMBA) Electrolyte Additives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400087. [PMID: 38377283 DOI: 10.1002/smll.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/04/2024] [Indexed: 02/22/2024]
Abstract
Increasing the charging cutoff voltage of LiCoO2 to 4.6 V is significant for enhancing battery density. However, the practical application of Li‖LiCoO2 batteries with a 4.6 V cutoff voltage faces significant impediments due to the detrimental changes under high voltage. This study presents a novel bifunctional electrolyte additive, 2-(trifluoromethyl)benzamide (2-TFMBA), which is employed to establish a stable and dense cathode-electrolyte interface (CEI). Characterization results reveal that an optimized CEI is achieved through the synergistic effects of the amide groups and trifluoromethyl groups within 2-TFMBA. The resulting CEI not only enhances the structural stability of LiCoO2 but also serves as a high-speed lithium-ion conduction channel, which expedites the insertion and extraction of lithium ions. The Li‖LiCoO2 batteries with 0.5 wt% 2-TFMBA achieves an 84.7% capacity retention rate after enduring 300 cycles at a current rate of 1 C, under a cut-off voltage of 4.6 V. This study provides valuable strategic insights into the stabilization of cathode materials in high-voltage batteries.
Collapse
Affiliation(s)
- Jinyang Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - He Huang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Meng Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xingkai Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Qiujiang Dong
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Wanxing Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Hao Guo
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Advanced Chemical Power Sources, Zunyi, Guizhou, 563003, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, (Ministry of Education), Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
5
|
Zhuang Y, Cheng H, Meng C, Chen B, Zhou H. Self-catalyzed Co, N-doped carbon nanotubes-grafted hollow carbon polyhedrons as efficient trifunctional electrocatalysts for zinc-air batteries and self-powered overall water splitting. J Colloid Interface Sci 2023; 643:162-173. [PMID: 37058891 DOI: 10.1016/j.jcis.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
It is still essential and challenging to explore inexpensive and versatile electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), for the development of rechargeable zinc-air batteries (ZABs) and overall water splitting. Herein, a rambutan-like trifunctional electrocatalyst is fabricated by re-growth of secondary zeolitic imidazole frameworks (ZIFs) on ZIF-8-derived ZnO and the following carbonization treatment. Co nanoparticles (NPs) are encapsulated into N-doped carbon nanotubes (NCNT) grafted N-enriched hollow carbon (NHC) polyhedrons to form the Co-NCNT@NHC catalyst. The strong synergy between the N-doped carbon matrix and Co NPs endows Co-NCNT@NHC with trifunctional catalytic activity. The Co-NCNT@NHC displays a half-wave potential of 0.88 V versus RHE for ORR in alkaline electrolyte, an overpotential of 300 mV at 20 mA cm-2 for OER, and an overpotential of 180 mV at 10 mA cm-2 for HER. Impressively, a water electrolyzer is successfully powered by two rechargeable ZABs in series, with Co-NCNT@NHC as the 'all-in-one' electrocatalyst. These findings are inspiring for the rational fabrication of high-performance and multifunctional electrocatalysts intended for the practical application of integrated energy-related systems.
Collapse
Affiliation(s)
- Yongyue Zhuang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hao Cheng
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Chunfeng Meng
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Boyuan Chen
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hu Zhou
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| |
Collapse
|
6
|
Song Z, Wang J, Song Y, Chen Z, Zhang H, Wu Z, Han X, Hu W. In Situ Interfacial Passivation in Aqueous Electrolyte for Mg-Air Batteries with High Anode Utilization and Specific Capacity. CHEMSUSCHEM 2023; 16:e202202207. [PMID: 36624605 DOI: 10.1002/cssc.202202207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Mg-air batteries are a promising new generation of batteries because they can operate in neutral electrolytes that are safe and nontoxic. However, the high corrosion and low utilization of Mg anodes in Mg-air batteries result in low specific capacity and severe self-discharge. In this study, an Mg(OTf)2 -based aqueous electrolyte is developed, which addresses these issues by reducing the contact of the Mg anode with water molecules from the hydrophobic -CF3 groups and forming an MgF2 protective layer. The assembled Mg-air batteries exhibit specific capacities of up to 1920 mAh g-1 Mg (87.32 % utilization based on the Mg anode). In addition, the resting time of the corresponding Mg-air batteries was 123 times longer than that of Mg-air batteries with pure NaCl electrolytes under the same conditions.
Collapse
Affiliation(s)
- Zhenxin Song
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiajun Wang
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Song
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zanyu Chen
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Hong Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Zhong Wu
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Wenbin Hu
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
7
|
Li Z, Xu X, Lu X, He C, Huang J, Sun W, Tian L. Synergistic coupling of FeNi3 alloy with graphene carbon dots for advanced oxygen evolution reaction electrocatalysis. J Colloid Interface Sci 2022; 615:273-281. [DOI: 10.1016/j.jcis.2022.01.088] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
|
8
|
Chen W, Chang S, Yu H, Li W, Zhang H, Zhang Z. FeNiP nanoparticle/N,P dual-doped carbon composite as a trifunctional catalyst towards high-performance zinc-air batteries and overall water electrolysis. NANOSCALE 2021; 13:17136-17146. [PMID: 34635897 DOI: 10.1039/d1nr04503b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A composite catalyst with a novel construction of bimetallic phosphide FeNiP nanoparticles embedded in an N,P double-doped carbon matrix was prepared. It was demonstrated to be a trifunctional catalyst that can efficiently catalyze the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). It was found that the introduction of oleylamine during the preparation can adjust the catalytic sites and finally lead to ideal catalytic performances. The obtained catalyst exhibited efficient ORR catalytic performance that surpassed the commercial Pt/C catalyst, with the OER performance comparable to that of RuO2 as well as excellent HER performance. The ORR half-wave potential is 0.879 V (vs. RHE) in 0.1 M KOH solution, while the OER overpotential at a current density of 10 mA cm-2 is only 280 mV in 1 M KOH solution. The potential gap between the ORR and OER was only 0.700 V in 0.1 M KOH solution. This trifunctional catalyst was further evaluated in energy devices including zinc-air batteries and water electrolysis. The liquid zinc-air battery assembly achieved a power density of 169 mW cm-2 and stably undergoes charge-discharge cycles for 210 hours. The solid-state zinc-air battery achieved a power density of 70 mW cm-2 and stably undergoes charge-discharge cycles for 40 hours. These performances surpassed the batteries assembled with a Pt/C-RuO2 mixed catalyst. This work established a foundation of composite catalysts coupled with bimetallic phosphide and hybrid carbon substrates, which will promote the development of high-performance multifunctional catalysts and their application in energy devices.
Collapse
Affiliation(s)
- Wendi Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Shengming Chang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Heping Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Wenming Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Hui Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zhongyi Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
9
|
Qi L, Wang M, Li X. Graphene-induced growth of Co3O4 nanoplates with modulable oxygen vacancies for improved OER properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00255d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene-induced growth of Co(OH)2 nanoplates from Co3O4 nanospheres was reported, showing an ultralow overpotential of 240 mV at 10 mA cm−2 and a Tafel slope of 107.8 mV dec−1.
Collapse
Affiliation(s)
- Lei Qi
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinheng Li
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|