1
|
Chen L, Xue K, Wang X, Duan R, Cao G, Li S, Zu G, Li Y, Wang J, Li X. Manipulating Orbital Hybridization of CoSe 2 by S Doping for the Highly Active Catalytic Effect of Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48639-48648. [PMID: 39208071 DOI: 10.1021/acsami.4c10425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In recent years, various transition metal compounds have been extensively studied to deal with the problems of slow reaction kinetics and the shuttle effect of lithium-sulfur (Li-S) batteries. Nevertheless, their catalytic performance still needs to be further improved by enhancing intrinsic catalytic activity and enriching active sites. Doping is an effective means to boost the catalytic performance through adjusting the electron structure of the catalysts. Herein, the electron structure of CoSe2 is adjusted by doping P, S with different p electron numbers and electronegativity. After S doping (S-CoSe2), the content of Co2+ increases, and charge is redistributed. Furthermore, more electrons are transferred between Li2S4/Li2S and S-CoSe2, and optimal Co-S bonds are formed between them with optimized d-p orbital hybridization, making the bonds of Li2S4/Li2S the longest and easy to break and decompose. Consequently, the Li-S batteries with the S-CoSe2-modified separator achieve improved rate performance and cycling performance, benefiting from the better bidirectional catalytic activity. This work will provide reference for the selection of the anion doping element to enhance the catalytic effect of transition metal compounds.
Collapse
Affiliation(s)
- Liping Chen
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an Key Laboratory of Clean Energy, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Kaiyu Xue
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an Key Laboratory of Clean Energy, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - XiaoBo Wang
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an Key Laboratory of Clean Energy, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Ruixian Duan
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Guiqiang Cao
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Shuyue Li
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an Key Laboratory of Clean Energy, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Guannan Zu
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an Key Laboratory of Clean Energy, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yong Li
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an Key Laboratory of Clean Energy, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Juan Wang
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an Key Laboratory of Clean Energy, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
- Guangdong Yuanneng Technologies Co Ltd, Foshan 528223, Guangdong, China
| |
Collapse
|
2
|
Chen L, Wang R, Li N, Bai Y, Zhou Y, Wang J. Optimized Adsorption-Catalytic Conversion for Lithium Polysulfides by Constructing Bimetallic Compounds for Lithium-Sulfur Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3075. [PMID: 38998158 PMCID: PMC11242168 DOI: 10.3390/ma17133075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Although lithium-sulfur batteries possess the advantage of high theoretical specific capacity, the inevitable shuttle effect of lithium polysulfides is still a difficult problem restricting its application. The design of highly active catalysts to promote the redox reaction during charge-discharge and thus reduce the existence time of lithium polysulfides in the electrolyte is the mainstream solution at present. In particular, bimetallic compounds can provide more active sites and exhibit better catalytic properties than single-component metal compounds by regulating the electronic structure of the catalysts. In this work, bimetallic compounds-nitrogen-doped carbon nanotubes (NiCo)Se2-NCNT and (CuCo)Se2-NCNT are designed by introducing Ni and Cu into CoSe2, respectively. The (CuCo)Se2-NCNT delivers an optimized adsorption-catalytic conversion for lithium polysulfide, benefitting from adjusted electron structure with downshifted d-band center and increased electron fill number of Co in (CuCo)Se2 compared with that of (NiCo)Se2. This endows (CuCo)Se2 moderate adsorption strength for lithium polysulfides and better catalytic properties for their conversion. As a result, the lithium-sulfur batteries with (CuCo)Se2-NCNT achieve a high specific capacity of 1051.06 mAh g-1 at 1C and an enhanced rate property with a specific capacity of 838.27 mAh g-1 at 4C. The work provides meaningful insights into the design of bimetallic compounds as catalysts for lithium-sulfur batteries.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Wang
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi’an University of Architecture and Technology, Xi’an 710055, China; (L.C.)
| |
Collapse
|
3
|
Liu H, Ma C, Zhang C, Zhang W, Deng Y, Sun H, Shen X, Yao S. Hybrid Membrane Composed of Nickel Diselenide Nanosheets with Carbon Nanotubes for Catalytic Conversion of Polysulfides in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202303157. [PMID: 38019179 DOI: 10.1002/chem.202303157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
Lithium-sulfur batteries demonstrate enormous energy density are promising forms of energy storage. Unfortunately, the slow redox kinetics and polysulfides shuttle effect are some of the factors that prevent the its development. To address these issues, the hybrid membrane with combination of nickel diselenide nanosheets modified carbon nanotubes (NSN@CNTs) and utilized Li2 S6 catholyte for lithium sulfur battery. The conductive CNTs facilitates fast electronic/ionic transport, while the polarity of NSN as a strong affinity to lithium polysulfides, effectively anchoring them, facilitating the redox conversion of polysulfide species, and effectively diminishing reaction barriers. The cell with NSN@CNTs delivers the first discharge capacity of 1123.8 mAh g-1 and maintains 786.5 mAh g-1 after 300 cycles (0.2 C) at the sulfur loading 5.4 mg. Its rate capability is commendable, enabling it to sustain a capacity of 559.8 mAh g-1 even at a high discharge rate of 2 C. In addition, its initial discharge capacity can remain 8.33 mAh even at 10.8 mg for duration of 100 cycles. This research indicates the potential application of NSN@CNTs hybrid materials in lithium-sulfur batteries.
Collapse
Affiliation(s)
- Hongtao Liu
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Cuijuan Zhang
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Wenwen Zhang
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yuge Deng
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Huayu Sun
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiangqian Shen
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shanshan Yao
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
4
|
Chen L, Cao G, Li Y, Zu G, Duan R, Bai Y, Xue K, Fu Y, Xu Y, Wang J, Li X. A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2024; 16:97. [PMID: 38285078 PMCID: PMC10825111 DOI: 10.1007/s40820-023-01299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/25/2023] [Indexed: 01/30/2024]
Abstract
Engineering transition metal compounds (TMCs) catalysts with excellent adsorption-catalytic ability has been one of the most effective strategies to accelerate the redox kinetics of sulfur cathodes. Herein, this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping, bimetallic/bi-anionic TMCs, and TMCs-based heterostructure composites. It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band, d/p-band center, electron filling, and valence state. Moreover, the electronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity, electron filling, and ion radius, resulting in electron redistribution, bonds reconstruction, induced vacancies due to the electronic interaction and changed crystal structure such as lattice spacing and lattice distortion. Different from the aforementioned two strategies, heterostructures are constructed by two types of TMCs with different Fermi energy levels, which causes built-in electric field and electrons transfer through the interface, and induces electron redistribution and arranged local atoms to regulate the electronic structure. Additionally, the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out. It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.
Collapse
Affiliation(s)
- Liping Chen
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Guiqiang Cao
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Yong Li
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Guannan Zu
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Ruixian Duan
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Yang Bai
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Kaiyu Xue
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yonghong Fu
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yunhua Xu
- Yulin University, Yulin, 719000, People's Republic of China
| | - Juan Wang
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
5
|
Yang S, Tiwari SK, Zhu Z, Cao D, He H, Chen Y, Thummavichai K, Wang N, Jiang M, Zhu Y. In Situ Fabrication of Mn-Doped NiMoO 4 Rod-like Arrays as High Performance OER Electrocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:827. [PMID: 36903705 PMCID: PMC10005328 DOI: 10.3390/nano13050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The slow kinetics of the oxygen evolution reaction (OER) is one of the significant reasons limiting the development of electrochemical hydrolysis. Doping metallic elements and building layered structures have been considered effective strategies for improving the electrocatalytic performance of the materials. Herein, we report flower-like nanosheet arrays of Mn-doped-NiMoO4/NF (where NF is nickel foam) on nickel foam by a two-step hydrothermal method and a one-step calcination method. The doping manganese metal ion not only modulated the morphologies of the nickel nanosheet but also altered the electronic structure of the nickel center, which could be the result of superior electrocatalytic performance. The Mn-doped-NiMoO4/NF electrocatalysts obtained at the optimum reaction time and the optimum Mn doping showed excellent OER activity, requiring overpotentials of 236 mV and 309 mV to drive 10 mA cm-2 (62 mV lower than the pure NiMoO4/NF) and 50 mA cm-2 current densities, respectively. Furthermore, the high catalytic activity was maintained after continuous operation at a current density of 10 mA cm-2 of 76 h in 1 M KOH. This work provides a new method to construct a high-efficiency, low-cost, stable transition metal electrocatalyst for OER electrocatalysts by using a heteroatom doping strategy.
Collapse
Affiliation(s)
- Shiming Yang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Santosh K. Tiwari
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Department of Chemistry, NMAM Institute of Technology, Nitte (Deemed to be University), Nitte 547110, Karnataka, India
| | - Zhiqi Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Dehua Cao
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huan He
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Kunyapat Thummavichai
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
- Department of Mathematics, Physics and Electrical Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
| | - Nannan Wang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Mingjie Jiang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yanqiu Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
6
|
Tian Z, Liu Y, Xu Q, Shi Y, Ma C, Peng B, Liu G, Yang J, Zheng W. Fe doped NiSe2 nanoarrays to boost electrocatalytic oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Dong Y, Zhang R, Peng H, Han D, Zheng X, Han Y, Zhang J. Active Sulfur-Host Material VS 4 with Surface Defect Engineering: Intercalation-Conversion Hybrid Cathode Boosting Electrochemical Performance of Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32474-32485. [PMID: 35802905 DOI: 10.1021/acsami.2c06067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition-metal sulfides as late-model electrocatalysts usually remain inactive in lithium-sulfur (Li-S) batteries in spite of their advantages to accelerate the rapid conversion of lithium polysulfides (LiPSs). Herein, a series of cobalt-doped vanadium tetrasulfide/reduced graphene oxide (x%Co-VS4/rGO) composites with an ultrathin layered structure as an active sulfur-host material are prepared by a one-pot hydrothermal method. The well-designed two-dimensional ultrathin 3%Co-VS4/rGO with heteroatom architecture defects (defect of Co-doping and defect of S-vacancies) can significantly improve the adsorption ability on LiPSs, the electrocatalytic activity in the Li2S potentiostatic deposition, and the active sulfur reduction/oxidation conversion reactions and greatly boost the electrochemical performances of Li-S batteries. On the one hand, the ultrathin 3%Co-VS4/rGO possesses good conductivity inheriting from rGO which contributes to the capacity of internal redox reactions on lithiation from VS4. On the other hand, the hybrid architectures provide strong adsorption and excellent electrocatalytic ability on LiPSs, which benefit from the surface defects caused by heteroatom doping. The S@3%Co-VS4/rGO cathode displays a high specific capacity of 1332.6 mA h g-1 at 0.2 C and a low-capacity decay of only 0.05% per cycle over 1000 cycles at 3 C with a primary capacity of 633.1 mA h g-1. Furthermore, when the sulfur loading (single-side coating) reaches 4.48 mg cm-2, it still can deliver 756.2 mA h g-1 after the 100th cycle at 0.2 C with 89.5% capacity retention. In addition, the in situ X-ray diffraction test reveals that the sulfur conversion mechanism is the processes of α-S8 → Li2S → β-S8 (first cycle) and then β-S8 ↔ Li2S during the subsequent cycles. The designing strategy with heteroatom doping and self-intercalation capacity adopted in this work would provide novel inspiration for fabricating advanced sulfur-host materials to achieve excellent electrochemical capability in Li-S batteries.
Collapse
Affiliation(s)
- Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Ran Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huaiqi Peng
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xianfu Zheng
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yumiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
8
|
Wu L, Yu Y, Dai Y, Zhao Y, Zeng W, Liao B, Pang H. Multisize CoS 2 Particles Intercalated/Coated-Montmorillonite as Efficient Sulfur Host for High-Performance Lithium-Sulfur Batteries. CHEMSUSCHEM 2022; 15:e202101991. [PMID: 34664405 DOI: 10.1002/cssc.202101991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The chemisorption and catalysis of lithium polysulfides (LiPSs) are effective strategies to suppress the shuttle effect in lithium-sulfur (Li-S) batteries. Herein, multisize CoS2 particles intercalated/coated-montmorillonite (MMT) as an efficient sulfur host is synthesized. As expected, the obtained S/CoS2 @MMT cathode achieves an absorption-catalysis synergistic effect through the polar MMT aluminosilicate sheets and the well-dispersed nano-micron CoS2 particles. Furthermore, efficient interlamellar ion pathways and interconnected conductive network are constructed within the composite host due to the intercalation/coating of CoS2 in/on MMT. Therefore, the S/CoS2 @MMT cathode achieves an outstanding rate performance up to 5C (∼548 mAh g-1 ) and a high cycling stability with low capacity decay of 0.063 and 0.067 % per cycle for 500 cycles at 1C and 2C, respectively. With a higher sulfur loading of 4.0 mg cm-2 , the cathode still delivers satisfactory rate and cycling performance. It shows that the CoS2 @MMT host has great application prospects in Li-S batteries.
Collapse
Affiliation(s)
- Lian Wu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yongqiang Dai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Yifang Zhao
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Wei Zeng
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| | - Bing Liao
- Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, P. R. China
| | - Hao Pang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665, P. R. China
| |
Collapse
|
9
|
Wu L, Zhao Y, Dai Y, Gao S, Liao B, Pang H. CoS2@montmorillonite as an efficient separator coating for high-performance lithium-sulfur batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00638c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The shuttle effect and sluggish redox kinetic of polysulfides still hinder the large-scale application of lithium-sulfur (Li-S) batteries. Herein, we adopt a CoS2-intercalated/coated-montmorillonite (CoS2@montmorillonite) composite to work as an efficient...
Collapse
|