1
|
Wu Z, Wang T, Zhao Z, Ji Y, Bai H, Jiang Y, Wang X, Nawaz H, He A, Xia J, Xu J, Chen S, Hu L. Niobium-based single-atom catalyst promoted fractionation of lignocellulose in choline chloride-lactic acid deep eutectic solvent. Int J Biol Macromol 2024; 269:132055. [PMID: 38704073 DOI: 10.1016/j.ijbiomac.2024.132055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Pretreatment is the key step to convert lignocelluloses to sustainable biofuels, biochemicals or biomaterials. In this study, a green pretreatment method based on choline chloride-lactic acid deep eutectic solvent (ChCl-LA) and niobium-based single-atom catalyst (Nb/CN) was developed for the fractionation of corn straw and further enzymatic hydrolysis of cellulose. With this strategy, significant lignin removal of 96.5 % could be achieved when corn straw was pretreated by ChCl-LA (1:2) DES over Nb/CN under 120 °C for 6 h. Enzymatic hydrolysis of the cellulose-enriched fraction (CEF) presented high glucose yield of 92.7 % and xylose yield of 67.5 %. In-depth investigations verified that the high yields of fractions and monosaccharides was attributed to the preliminary fractionation by DES and the deep fractionation by Nb/CN. Significantly, compared to other reported soluble catalysts, the synthesized single-atom catalyst displayed excellent reusability by simple filtration and enzymatic hydrolysis. The recyclability experiments showed that the combination of ChCl-LA DES and Nb/CN could be repeated at least three times for corn straw fractionation, moreover, the combination displayed remarkable feedstock adaptability.
Collapse
Affiliation(s)
- Zhen Wu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China.
| | - Tao Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Zihe Zhao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yifan Ji
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Hongli Bai
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yetao Jiang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Haq Nawaz
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Hu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China.
| |
Collapse
|
2
|
Yang H, Chai M, Geun Yoo C, Yuan J, Meng X, Yao L. Role of lignin in synergistic digestibility improvement of wheat straw by novel alkaline deep eutectic solvent and tetrahydrofuran pretreatment. BIORESOURCE TECHNOLOGY 2024; 397:130460. [PMID: 38373505 DOI: 10.1016/j.biortech.2024.130460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
A novel efficient pretreatment system containing alkaline deep eutectic solvent (DES) and tetrahydrofuran (THF) was developed in the present study. Under pretreatment conditions of 160 ℃ and 1 h, DES-THF pretreatment was more efficient (81.61%) in cellulose digestibility improvement than DES (choline chloride/monoethanolamine, 67.54%). To further explore lignin structural transformation and lignin-cellulase interaction after pretreatment, milled wood lignin (MWL) was extracted and characterized. Compared with DES-MWL, DES-THF-MWL showed an increased carboxyl group content (24.0%) and decreased condensed phenolic hydroxyl content (9.1%). In DES-MWL, β-O-4 content was 21.79%, while in DES-THF-MWL, β-O-4 accounted for 45.45%, indicating that the addition of THF alleviated cleavage of β-O-4 alkyl ether bonds. Fluorescence emission spectroscopy results showed that quenching mechanism of DES-THF-MWL and cellulase was dynamic, which was different from other lignin. Compared with DES-MWL, decreased Ka between DES-THF-MWL and cellulase indicated decreasing interaction between them. DES-THF pretreatment provides a novel pretreatment method for bioenergy.
Collapse
Affiliation(s)
- Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, PR China
| | - Mengzhen Chai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Jie Yuan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996-2200, USA
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
3
|
Chen X, Liu Q, Wang N, Liu C, Shi J, Liu L. Enhancing biomass conversion: Efficient hemicellulose removal and cellulose saccharification in poplar with FeCl 3 coupled with acidic electrolyzed water pretreatment. Int J Biol Macromol 2023; 253:127600. [PMID: 37871719 DOI: 10.1016/j.ijbiomac.2023.127600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Due to the recalcitrant structure of woody biomass such as poplar, the efficient disassembly and separation of hemicellulose component from woody biomass is crucial for green biomass processing and full component utilization. This study presented an environmentally friendly approach to utilize acidic electrolyzed water (AEW) combined with metal salts and investigated its pretreatment effects on hemicellulose removal and cellulose and lignin retention under different conditions. Meanwhile, the structural properties and enzymatic hydrolysis performance of the pretreated residues were also characterized. As a result, under the optimized pretreatment conditions (0.03 mol/L FeCl3 with AEW at 180 °C for 10 min), hemicellulose removal from poplar wood reached 98.64 %, accompanied by xylose recovery rate of 98.46 %, cellulose retention rate of 93.43 % and lignin retention rate of 94.29 %. Enzymatic hydrolysis rate of the pretreated cellulose-enriched substrate reached 97.65 %. Furthermore, comprehensive structural characterizations revealed that FeCl3 coupled with AEW pretreatment resulted in surface damage to the poplar wood, effective removal of the amorphous hemicellulose component, and partial destruction of the cellulose crystallinity. In conclusion, FeCl3 coupled with AEW pretreatment effectively separates hemicellulose, leading to significant alterations in biomass composition and structure, ultimately resulting in improved enzymatic digestion. These results provide theoretical support for targeted dissociation of hemicellulose and full component utilization of woody biomass.
Collapse
Affiliation(s)
- Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qianjing Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Caoyunrong Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
4
|
Zhang R, Gao H, Wang Y, He B, Lu J, Zhu W, Peng L, Wang Y. Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction. BIORESOURCE TECHNOLOGY 2023; 369:128315. [PMID: 36414143 DOI: 10.1016/j.biortech.2022.128315] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose represents the most abundant carbon-capturing substance that is convertible for biofuels and bioproduction. Although biomass pretreatments have been broadly applied to reduce lignocellulose recalcitrance for enhanced enzymatic saccharification, they mostly require strong conditions with potential secondary waste release. By classifying all major types of pretreatments that have been recently conducted with different sources of lignocellulose substrates, this study sorted out their distinct roles for wall polymer extraction and destruction, leading to the optimal pretreatments evaluated for cost-effective biomass enzymatic saccharification to maximize biofuel production. Notably, all undigestible lignocellulose residues are also aimed for effective conversion into value-added bioproduction. Meanwhile, desired pretreatments were proposed for the generation of highly-valuable nanomaterials such as cellulose nanocrystals, lignin nanoparticles, functional wood, carbon dots, porous and graphitic nanocarbons. Therefore, this article has proposed a novel strategy that integrates cost-effective and green-like pretreatments with desirable lignocellulose substrates for a full lignocellulose utilization with zero-biomass-waste liberation.
Collapse
Affiliation(s)
- Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hairong Gao
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Yongtai Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Boyang He
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Jun Lu
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China.
| |
Collapse
|
5
|
Fatima Haq F, Mahmood H, Iqbal T, Measam Ali M, Jafar Khan M, Moniruzzaman M. Development of sustainable biocomposite panels assisted with deep eutectic solvent pretreatment of agro-industrial residue. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Li P, Yang C, Jiang Z, Jin Y, Wu W. Lignocellulose Pretreatment by Deep Eutectic Solvents and Related Technologies: A Review. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Wang N, Wang B, Si H, Hu S, Chen L, Liao Y, Wang L, Zhang Y, Jiang J. Comparative investigation of the structural characteristics of tobacco stalk lignin during the DES and alkaline deconstruction toward sustainable materials. Front Bioeng Biotechnol 2022; 10:994760. [PMID: 36091435 PMCID: PMC9452755 DOI: 10.3389/fbioe.2022.994760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin polymer as a natural aromatic macromolecule presents significant prospects in producing functional and sustainable materials, and achieving a comprehensive characterization will facilitate their target valorization. In the present study, deep eutectic solvent (DES) and alkaline delignification were adopted to deconstruct tobacco stalk before and after hydrothermal pretreatment, obtaining diverse lignin fractions with fascinating characteristics. DES lignin exhibited a higher yield and homogenous molecular structure than MWL. A severe cleavage of the inter-unit linkages in lignin was also observed. This result mostly originated from the efficient delignification of the DES deconstruction system adopted. Moreover, all the recovered lignin fractions exhibited good micro-nanoparticle size that can enhance the valorization of lignin in nanomaterial production, in which the hydrothermal-assisted DES deconstruction promoted the formation of the smaller lignin nanoparticle size. Next, all the recovered lignin presented an excellent UV absorption and structure-related absorption performance or thermal properties. Overall, this work provides an important foundation for further exploiting DES/alkaline delignification lignin that can be applied as an ideal feedstock for producing sustainable functional or micro/nanomaterials.
Collapse
Affiliation(s)
- Na Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Bo Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Hui Si
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Suxia Hu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Lin Chen
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Yu Liao
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| | - Yifan Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| |
Collapse
|
8
|
Hong S, Li HY, Shen XJ, Sun SN, Sun Z, Yuan TQ. Unveiling the Migration and Transformation Mechanism of Lignin in Eucalyptus During Deep Eutectic Solvent Pretreatment. CHEMSUSCHEM 2022; 15:e202200553. [PMID: 35593890 DOI: 10.1002/cssc.202200553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Deep eutectic solvents (DESs) have unique advantages in biomass conversion. However, the migration and transformation mechanism of lignin in the cell wall during the DES pretreatment is still elusive. In this work, Eucalyptus blocks were pretreated in choline chloride/lactic acid DES to reveal the lignin migration. Meanwhile, the remaining lignin in the pretreated residue, the regenerated DES lignin, and the solubilized degraded lignin in the recovered DES were investigated to decipher the lignin transformation. Results showed that the DES pretreatment resulted in the penetration of DES from the cell lumen to the cell wall, and lignin in the secondary wall was more easily dissolved than that in the cell corner middle lamella. The syringyl unit of lignin was better stabilized in the DES than the guaiacyl unit of lignin. The condensed lignin fraction mainly remained in the pretreated residue, while the solubilized degraded lignin fraction was monomeric aromatic ketone compounds. This study elucidates the fate of lignin during the DES pretreatment, which could also promote the development of a modern lignocellulosic pretreatment technique.
Collapse
Affiliation(s)
- Si Hong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Han-Yin Li
- College of Forestry, Henan Agricultural University, Zhengzhou, Agricultural Road No. 63, 450002, P. R. China
| | - Xiao-Jun Shen
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian, 116023, P. R. China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
9
|
Gong WH, Zhang C, He JW, Gao YY, Li YJ, Zhu MQ, Wen JL. A synergistic hydrothermal-deep eutectic solvents (DES) pretreatment for acquiring xylooligosaccharides and lignin nanoparticles from Eucommia ulmoides wood. Int J Biol Macromol 2022; 209:188-197. [DOI: 10.1016/j.ijbiomac.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
|
10
|
Structural elucidation and targeted valorization of poplar lignin from the synergistic hydrothermal-deep eutectic solvent pretreatment. Int J Biol Macromol 2022; 209:1882-1892. [PMID: 35489620 DOI: 10.1016/j.ijbiomac.2022.04.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/16/2023]
Abstract
Elucidating the structural variations of lignin during the pretreatment is very important for lignin valorization. Herein, poplar wood was pretreated with an integrated process, which was composed of AlCl3-catalyzed hydrothermal pretreatment (HTP, 130-150 °C, 1.0 h) and mild deep-eutectic solvents (DES, 100 °C, 10 min) delignification for recycling lignin fractions. Confocal Raman Microscopy (CRM) was developed to visually monitor the delignification process during the HTP-DES pretreatment. NMR characterizations (2D-HSQC and 31P NMR) and elemental analysis demonstrated that the lignin fractions had undergone the following structural changes, such as dehydration, depolymerization, condensation. Molecular weights (GPC), microstructure (SEM and TEM), and antioxidant activity (DPPH analysis) of the lignins revealed that the DES delignification resulted in homogeneous lignin fragments (1.32 < PDI < 1.58) and facilitated the rapid assemblage of lignin nanoparticles (LNPs) with controllable nanoscale sizes (30-210 nm) and excellent antioxidant activity. These findings will enhance the understanding of structural transformations of the lignin during the integrated process and maximize the lignin valorization in a current biorefinery process.
Collapse
|
11
|
Guo KN, Zhang C, Xu LH, Sun SC, Wen JL, Yuan TQ. Efficient fractionation of bamboo residue by autohydrolysis and deep eutectic solvents pretreatment. BIORESOURCE TECHNOLOGY 2022; 354:127225. [PMID: 35477102 DOI: 10.1016/j.biortech.2022.127225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Bamboo processing residue, which is rich in parenchyma cells, was treated as huge waste in bamboo processing industry, such as reassemble bamboo and bamboo flooring. Herein, autohydrolysis and rapid different deep eutectic solvents (DES) delignification strategy were consecutively performed to remove hemicelluloses and lignin from bamboo processing residue. The xylooligosaccharides (XOS) with high yield (34.35%) was achieved in the autohydrolysis process. Results showed that alkaline DES pretreatment resulted in the highest glucose yield (88.22%) and relatively high delignification rate (83.75%) as well as well-preserved lignin structures. However, the lignin fractions obtained under acidic DES conditions were tending to assemble into lignin nanoparticles (LNPs) and having excellent antioxidant activity as compared to those obtained from alkaline DES system. In brief, the combination of autohydrolysis and rapid DES delignification can achieve orientated fractionation of the components from the industrialized bamboo.
Collapse
Affiliation(s)
- Kai-Ning Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Ma CY, Xu LH, Sun Q, Sun SN, Cao XF, Wen JL, Yuan TQ. Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. BIORESOURCE TECHNOLOGY 2022; 352:127065. [PMID: 35351557 DOI: 10.1016/j.biortech.2022.127065] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
An aspirational pretreatment method for efficient fractionation and tailored valorization of large industrial biomass can ensure the realizability of sustainable biorefinery strategies. In this study, an ultrafast alkaline deep eutectic solvents (DES) pretreatment strategy was developed to efficiently extract the lignin nanoparticles and retain cellulose residues that could be readily enzymatic saccharified to obtain fermentative glucose for the bioenergy production from industrial xylose residue. Results showed that the DES pretreatment had excellent delignification performance and the regenerated DES lignin nanoparticles exhibited well-preserved structures and excellent antioxidant activity, as well as low molecular weights and relatively uniform size distribution, which could facilitate downstream catalytic degradation for production of chemicals and preparation of lignin-based materials. Under the optimal condition (DES pretreatment: 80 °C, 10 min; saccharification: 10 FPU/g, 5 wt%, 100 mg/g Tween 80), the glucose yield of 90.12% could be achieved, which was dramatically increased compared to raw materials.
Collapse
Affiliation(s)
- Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
13
|
Bai Y, Zhang XF, Wang Z, Zheng T, Yao J. Deep eutectic solvent with bifunctional Brønsted-Lewis acids for highly efficient lignocellulose fractionation. BIORESOURCE TECHNOLOGY 2022; 347:126723. [PMID: 35063623 DOI: 10.1016/j.biortech.2022.126723] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Green and low cost deep eutectic solvents (DESs) are promising to replace the solid acids and ionic liquids in biomass fractionation process. To enhance the lignocellulose pretreatment efficiency, an acidic DES that composed of Brønsted acid (ZnCl2) as hydrogen bond acceptor and Lewis acid (lactic acid) as hydrogen bond donator was designed. This bifunctional DES was used for the extraction of lignin from poplar sawdust. Under the optimal pretreatment condition, the ZnCl2-lactic acid DES could recover 95.2 wt% of lignin with a purity of 92.1%. The recovered lignin demonstrated a low polydispersity of 1.67 and small amount of β-aryl-ethers. Moreover, the acidic DES had a good recyclability and reusability. Such performance was attributed to the presence of bifunctional acid sites, which help selectively cleave lignin-carbohydrate complex linkages. The acidity and polarity of Brønsted acid can be modulated by the Lewis acid, thus synergistically promote the lignin extraction and production.
Collapse
Affiliation(s)
- Yunhua Bai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianran Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Del Río PG, Gullón B, Wu J, Saddler J, Garrote G, Romaní A. Current breakthroughs in the hardwood biorefineries: Hydrothermal processing for the co-production of xylooligosaccharides and bioethanol. BIORESOURCE TECHNOLOGY 2022; 343:126100. [PMID: 34626760 DOI: 10.1016/j.biortech.2021.126100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The development of lignocellulosic biorefineries requires a first stage of pretreatment which enables the efficient valorization of all fractions present in this renewable material. In this sense, this review aims to show the main advantages of hydrothermal treatment as a first step of a biorefinery infrastructure using hardwood as raw material, as well as, main drawback to overcome. Hydrothermal treatment of hardwood highlights for its high selectivity for hemicelluloses solubilization as xylooligosaccharides (XOS). Nevertheless, the suitable conditions for XOS production are inadequate to achieve an elevate cellulose to glucose conversion. Hence, several strategies namely the combination of hydrothermal treatment with delignification process, in situ modification of lignin and the mixture with another renewable resources (concretely, seaweeds, and by-products generated in the food industry with high sugar content) were pinpointed as promising alternative to increase the final ethanol concentration coupled with XOS recovery in the hydrolysate.
Collapse
Affiliation(s)
- Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Jie Wu
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jack Saddler
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain.
| |
Collapse
|
15
|
Sun Q, Chen WJ, Pang B, Sun Z, Lam SS, Sonne C, Yuan TQ. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2021; 341:125807. [PMID: 34474237 DOI: 10.1016/j.biortech.2021.125807] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, visualization and characterization of lignocellulose at different scales elucidate the modifications of its ultrastructural and chemical features during hydrothermal pretreatment which include degradation and dissolving of hemicelluloses, swelling and partial hydrolysis of cellulose, melting and redepositing a part of lignin in the surface. As a result, cell walls are swollen, deformed and de-laminated from the adjacent layer, lead to a range of revealed droplets that appear on and within cell walls. Moreover, the certain extent morphological changes significantly promote the downstream processing steps, especially for enzymatic hydrolysis and anaerobic fermentation to bioethanol by increasing the contact area with enzymes. However, the formation of pseudo-lignin hinders the accessibility of cellulase to cellulose, which decreases the efficiency of enzymatic hydrolysis. This review is intended to bridge the gap between the microstructure studies and value-added applications of lignocellulose while inspiring more research prospects to enhance the hydrothermal pretreatment process.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Wei-Jing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Bo Pang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China.
| |
Collapse
|