1
|
Huang ZX, Wang ZY, Yuan YJ, Chen Y, Wang JH, Hu YH, Tang JP, Shen ZK, Yu ZT, Zou Z. Defect Engineering of Ultrasmall TiO 2 Nanoparticles Enables Highly Efficient Photocatalysts for Solar H 2 Production from Woody Biomass. NANO LETTERS 2024; 24:11968-11975. [PMID: 39259027 DOI: 10.1021/acs.nanolett.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The conversion of woody biomass to H2 through photocatalysis provides a sustainable strategy to generate renewable hydrogen fuel but was limited by the slow decomposition rate of woody biomass. Here, we fabricate ultrasmall TiO2 nanoparticles with tunable concentration of oxygen vacancy defects (VO-TiO2) as highly efficient photocatalysts for photocatalytic conversion of woody biomass to H2. Owing to the positive role of oxygen vacancy in reducing energy barrier for the generation of •OH which was the critical species to oxidize woody biomass, the obtained VO-TiO2 achieves rapid photocatalytic conversion of α-cellulose and poplar wood chip to H2 in the presence of Pt nanoclusters as the cocatalyst. As expected, the highest H2 generation rate in α-cellulose and poplar wood chip system respectively achieve 1146 and 59 μmol h-1 g-1, and an apparent quantum yield of 4.89% at 380 nm was obtained in α-cellulose aqueous solution.
Collapse
Affiliation(s)
- Ze-Xin Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zi-Yi Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yan Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Jia-Hao Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yun-Hui Hu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Ji-Ping Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhi-Kai Shen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
2
|
Feng S, Nguyen PTT, Ma X, Yan N. Photorefinery of Biomass and Plastics to Renewable Chemicals using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2024; 63:e202408504. [PMID: 38884612 DOI: 10.1002/anie.202408504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The photocatalytic conversion of biomass and plastic waste provides opportunities for sustainable fuel and chemical production. Heterogeneous photocatalysts, typically composed of semiconductors with distinctive redox properties in their conduction band (CB) and valence band (VB), facilitate both the oxidative and reductive valorization of organic feedstocks. This article provides a comprehensive overview of recent advancements in the photorefinery of biomass and plastics from the perspective of the redox properties of photocatalysts. We explore the roles of the VB and CB in enhancing the value-added conversion of biomass and plastics via various pathways. Our aim is to bridge the gap between photocatalytic mechanisms and renewable carbon feedstock valorization, inspiring further development in photocatalytic refinery of biomass and plastics.
Collapse
Affiliation(s)
- Shixiang Feng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Phuc T T Nguyen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Singapore
| |
Collapse
|
3
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
4
|
Li X, Su Z, Jiang H, Liu J, Zheng L, Zheng H, Wu S, Shi X. Band Structure Tuning via Pt Single Atom Induced Rapid Hydroxyl Radical Generation toward Efficient Photocatalytic Reforming of Lignocellulose into H 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400617. [PMID: 38441279 DOI: 10.1002/smll.202400617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Indexed: 08/02/2024]
Abstract
Photocatalytic lignocellulose reforming for H2 production presents a compelling solution to solve environmental and energy issues. However, achieving scalable conversion under benign conditions faces consistent challenges including insufficient active sites for H2 evolution reaction (HER) and inefficient lignocellulose oxidation directly by photogenerated holes. Herein, it is found that Pt single atom-loaded CdS nanosheet (PtSA-CdS) would be an active photocatalyst for lignocellulose-to-H2 conversion. Theoretical and experimental analyses confirm that the valence band of CdS shifts downward after depositing isolated Pt atoms, and the slope of valence band potential on pH for PtSA-CdS is more positive than Nernstian equation. These characteristics allow PtSA-CdS to generate large amounts of •OH radicals even at pH 14, while the capacity is lacking with CdS alone. The employment of •OH/OH- redox shuttle succeeds in relaying photoexcited holes from the surface of photocatalyst, and the •OH radicals can diffuse away to decompose lignocellulose efficiently. Simultaneously, surface Pt atoms, featured with a thermoneutralΔ G H ∗ $\Delta G_{\mathrm{H}}^{\mathrm{*}}$ , would collect electrons to expedite HER. Consequently, PtSA-CdS performs a H2 evolution rate of 10.14 µmol h-1 in 1 m KOH aqueous solution, showcasing a remarkable 37.1-fold enhancement compared to CdS. This work provides a feasible approach to transform waste biomass into valuable sources.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Zhiqi Su
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huiqian Jiang
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiaqi Liu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
5
|
Liu QY, Ma C, Chen Y, Wang ZY, Zhang FG, Tang JP, Yuan YJ. Solar-Driven Photothermal Catalytic Lignocellulosic Biomass-to-H 2 Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50206-50215. [PMID: 37871167 DOI: 10.1021/acsami.3c11091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The conversion of lignocellulosic biomass to chemical fuel can achieve the sustainable use of lignocellulosic biomass, but it was limited by the lack of an effective conversion strategy. Here, we reported a unique approach of photothermal catalysis by using MoS2-reduced graphene oxide (MoS2/RGO) as the catalyst to convert lignocellulosic biomass into H2 fuel in alkaline solution. The RGO acting as a support for the growth of MoS2 results in the high exposed Mo edges, which act as efficient Lewis acidic sites for the oxygenolysis of lignocellulosic biomass dissolved in alkaline solution. The broad light absorption capacity and abundant Lewis acidic sites make MoS2/RGO to be efficient catalysts for photothermal catalytic H2 production from lignocellulosic biomass, and the H2 generation rate with respect to catalyst under 300 W Xe lamp irradiation in cellulose, rice straw, wheat straw, polar wood chip, bamboo, rice hull, and corncob aqueous solution achieve 223, 168, 230, 564, 390, 234, and 55 μmol·h-1·g-1, respectively. It is believed that this photothermal catalysis is a simple and "green" approach for the lignocellulosic biomass-to-H2 conversion, which would have great potential as a promising approach for solar energy-driven H2 production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Qing-Yu Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Chi Ma
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yan Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zi-Yi Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Fu-Guang Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Ji-Ping Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
6
|
Linley S, Reisner E. Floating Carbon Nitride Composites for Practical Solar Reforming of Pre-Treated Wastes to Hydrogen Gas. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207314. [PMID: 37171802 PMCID: PMC10375181 DOI: 10.1002/advs.202207314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Indexed: 05/13/2023]
Abstract
Solar reforming (SR) is a promising green-energy technology that can use sunlight to mitigate biomass and plastic waste while producing hydrogen gas at ambient pressure and temperature. However, practical challenges, including photocatalyst lifetime, recyclability, and low production rates in turbid waste suspensions, limit SR's industrial potential. By immobilizing SR catalyst materials (carbon nitride/platinum; CNx |Pt and carbon nitride/nickel phosphide; CNx |Ni2 P) on hollow glass microspheres (HGM), which act as floating supports enabling practical composite recycling, such limitations can be overcome. Substrates derived from plastic and biomass, including poly(ethylene terephthalate) (PET) and cellulose, are reformed by floating SR composites, which are reused for up to ten consecutive cycles under realistic, vertical simulated solar irradiation (AM1.5G), reaching activities of 1333 ± 240 µmolH2 m-2 h-1 on pre-treated PET. Floating SR composites are also advantageous in realistic waste where turbidity prevents light absorption by non-floating catalyst powders, achieving 338.1 ± 1.1 µmolH2 m-2 h-1 using floating CNx versus non-detectable H2 production with non-floating CNx and a pre-treated PET bottle as substrate. Low Pt loadings (0.033 ± 0.0013% m/m) demonstrate consistent performance and recyclability, allowing efficient use of precious metals for SR hydrogen production from waste substrates at large areal scale (217 cm2 ), taking an important step toward practical SR implementation.
Collapse
Affiliation(s)
- Stuart Linley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB21EW, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB21EW, UK
| |
Collapse
|
7
|
Biomimetic Catalysts Based on Au@TiO 2-MoS 2-CeO 2 Composites for the Production of Hydrogen by Water Splitting. Int J Mol Sci 2022; 24:ijms24010363. [PMID: 36613813 PMCID: PMC9820641 DOI: 10.3390/ijms24010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The photocatalytic hydrogen evolution reaction (HER) by water splitting has been studied, using catalysts based on crystalline TiO2 nanowires (TiO2NWs), which were synthesized by a hydrothermal procedure. This nanomaterial was subsequently modified by incorporating different loadings (1%, 3% and 5%) of gold nanoparticles (AuNPs) on the surface, previously exfoliated MoS2 nanosheets, and CeO2 nanoparticles (CeO2NPs). These nanomaterials, as well as the different synthesized catalysts, were characterized by electron microscopy (HR-SEM and HR-TEM), XPS, XRD, Raman, Reflectance and BET surface area. HER studies were performed in aqueous solution, under irradiation at different wavelengths (UV-visible), which were selected through the appropriate use of optical filters. The results obtained show that there is a synergistic effect between the different nanomaterials of the catalysts. The specific area of the catalyst, and especially the increased loading of MoS2 and CeO2NPs in the catalyst substantially improved the H2 production, with values of ca. 1114 μm/hg for the catalyst that had the best efficiency. Recyclability studies showed only a decrease in activity of approx. 7% after 15 cycles of use, possibly due to partial leaching of gold nanoparticles during catalyst use cycles. The results obtained in this research are certainly relevant and open many possibilities regarding the potential use and scaling of these heterostructures in the photocatalytic production of H2 from water.
Collapse
|
8
|
Han Z, Zhang X, Zuo Y, Dong H, Ren H. Decorating 2D Ti3C2 on flower-like hierarchical Bi2WO6 for the 2D/2D heterojunction construction towards photodegradation of tetracycline antibiotics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
In-situ synthesis of nickel/palladium bimetal/ZnIn2S4 Schottky heterojunction for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 623:205-215. [DOI: 10.1016/j.jcis.2022.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/29/2022]
|
10
|
Yuan YJ, Lu N, Bao L, Tang R, Zhang FG, Guan J, Wang HD, Liu QY, Cheng Q, Yu ZT, Zou Z. SiP Nanosheets: A Metal-Free Two-Dimensional Photocatalyst for Visible-Light Photocatalytic H 2 Production and Nitrogen Fixation. ACS NANO 2022; 16:12174-12184. [PMID: 35900818 DOI: 10.1021/acsnano.2c02831] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductors for photocatalysis are more advantageous than the other photocatalytic materials since the 2D semiconductors generally have large specific surface area and abundant active sites. Phosphorus silicon (SiP), with an indirect bandgap in bulk and a direct bandgap in the monolayer, has recently emerged as an attractive 2D material because of its anisotropic layered structure, tunable bandgap, and high charge carrier mobility. However, the utilization of SiP as a photocatalyst for photocatalysis has been scarcely studied experimentally. Herein, we reported the synthesis of SiP nanosheets (SiP NSs) prepared from bulk SiP by an ultrasound-assisted liquid-phase exfoliation approach which can act as a metal-free, efficient, and visible-light-responsive photocatalyst for photocatalytic H2 production and nitrogen fixation. In a half-reaction system, the maximal H2 and NH3 generation rate under visible light irradiation achieves 528 and 35 μmol·h-1·g-1, respectively. Additionally, the apparent quantum yield for H2 production at 420 nm reaches 3.56%. Furthermore, a Z-scheme photocatalytic overall water-splitting system was successfully constructed by using Pt-loaded SiP NSs as the H2-evolving photocatalyst, Co3O4/BiVO4 as the O2-evolving photocatalyst, and Co(bpy)33+/2+ as an electron mediator. Notably, the highest H2 and O2 generation rate with respect to Pt/SiP NSs achieves 71 and 31 μmol·h-1·g-1, respectively. This study explores the potential application of 2D SiP as a metal-free visible-light-responsive photocatalyst for photocatalysis.
Collapse
Affiliation(s)
- Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Nan Lu
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Rui Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Fu-Guang Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Jie Guan
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Hao-Dong Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Qing-Yu Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Quan Cheng
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science Nanjing University Nanjing 210093, People's Republic of China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science Nanjing University Nanjing 210093, People's Republic of China
| |
Collapse
|
11
|
Li X, Li Q, Zhang T, Lou Y, Chen J. Ni 2P NPs loaded on methylthio-functionalized UiO-66 for boosting visible-light-driven photocatalytic H 2 production. Dalton Trans 2022; 51:12282-12289. [PMID: 35899810 DOI: 10.1039/d2dt01205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UiO-66 family shows promising photocatalytic prospects in water splitting for hydrogen evolution under visible light irradiation due to its suitable band gap and adequate active sites. In this work, novel Ni2P/UiO-66-(SCH3)2 composites were prepared by a simple solvothermal method. These as-synthesized samples were fully characterized by XRD, SEM, TEM, HRTEM, EDS, and XPS methods. The effectiveness of visible light driven photocatalytic water-splitting to produce hydrogen was investigated in the presence of sacrificial agents. The results showed that the optimal hydrogen yield of 5 wt% Ni2P/UiO-66-(SCH3)2 is 3724.22 μmol g-1 h-1, reaching almost 187 times that of pristine UiO-66-(SCH3)2 (19.93 μmol g-1 h-1). Meanwhile, long term cycling stability tests also showed that Ni2P/UiO-66-(SCH3)2 composites present an excellent photocatalytic H2 production stability. Photoelectrochemical performance analysis revealed that the high catalytic activity of the composite materials could be associated with the synergistic effect of UiO-66-(SCH3)2 and Ni2P. Light stimulates UiO-66-(SCH3)2 to generate electrons and holes, and Ni2P as a cocatalyst could effectively transmit electrons and boost photogenerated charge separation. This work provides a reference for exploring UiO-66 family catalysts with good catalytic activity.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Qiulin Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Tiantian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
12
|
Liu QY, Wang P, Zhang FG, Yuan YJ. Visible-Light-Driven Photocatalytic Cellulose-to-H2 Conversion by MoS2/ZnIn2S4 Photocatalyst with the Assistance of Cellulase. Chemphyschem 2022; 23:e202200319. [PMID: 35817732 DOI: 10.1002/cphc.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/10/2022] [Indexed: 11/08/2022]
Abstract
Visible-light-driven photocatalytic cellulose-to-H 2 conversion system was successfully constructed by using MoS 2 /ZnIn 2 S 4 as the photocatalyst and cellulase as the enzyme catalyst. In this smartly-designed system, the cellulose was firstly converted to glucose by the action of cellulase, and the generated glucose acted as an efficient holes trapper and electron donor which was further converted into H 2 through photocatalytic reaction over MoS 2 /ZnIn 2 S 4 photocatalyst under visible light irradiation. The optimum H 2 generation rate achieves 12.2 μmol·h -1 ·g -1 with respect to photocatalyst under visible light irradiation (λ>420 nm) in photocatalytic system in the presence of 100 mg 3% MoS 2 /ZnIn 2 S 4 , 100 mg cellulase and 2 g poplar wood chip. These results open up a new possibility for the development of efficient visible-light-responding photocatalytic cellulose -to-H 2 conversion system that combine photocatalysis and enzyme technology.
Collapse
Affiliation(s)
- Qing-Yu Liu
- Hangzhou Dianzi University, College of Materials and Environmental Engineering, CHINA
| | - Pei Wang
- Hangzhou Dianzi University, College of Materials and Environmental Engineering, CHINA
| | - Fu-Guang Zhang
- Hangzhou Dianzi University, College of Materials and Environmental Engineering, CHINA
| | - Yong-Jun Yuan
- Hangzhou Dianzi University, College of Materials and Environmental Engineering, Baiyang Street 3118, Hangzhou, Zhejiang, P.R.China, 310018, Hangzhou, CHINA
| |
Collapse
|
13
|
Li J, Wang B, Pang Y, Sun M, Liu S, Fang W, Chen L. Fabrication of 0D/1D Bi2MoO6/Bi/TiO2 heterojunction with effective interfaces for boosted visible-light photocatalytic degradation of tetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Cheng Q, Yuan YJ, Tang R, Liu QY, Bao L, Wang P, Zhong J, Zhao Z, Yu ZT, Zou Z. Rapid Hydroxyl Radical Generation on (001)-Facet-Exposed Ultrathin Anatase TiO2 Nanosheets for Enhanced Photocatalytic Lignocellulose-to-H2 Conversion. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Quan Cheng
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
| | - Rui Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
| | - Qing-Yu Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
| | - Pei Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
| | - Zongyan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People’s Republic of China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science Nanjing University, Nanjing 210093, People’s Republic of China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
15
|
Liu QY, Wang HD, Yuan YJ, Tang R, Bao L, Ma Z, Zhong J, Yu ZT, Zou Z. Visible-light-responsive Z-scheme system for photocatalytic lignocellulose-to-H 2 conversion. Chem Commun (Camb) 2021; 57:9898-9901. [PMID: 34494624 DOI: 10.1039/d1cc03807a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Z-scheme system was successfully constructed for visible-light-driven photocatalytic H2 production from lignocelluloses, the highest H2 evolution rate of this Z-scheme system is 5.3 and 1.6 μmol h-1 in α-cellulose and poplar wood chip aqueous solutions, respectively, under visible light irradiation.
Collapse
Affiliation(s)
- Qing-Yu Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Hao-Dong Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Rui Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Zhanfeng Ma
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China.
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
16
|
Rao C, Xie M, Liu S, Chen R, Su H, Zhou L, Pang Y, Lou H, Qiu X. Visible Light-Driven Reforming of Lignocellulose into H 2 by Intrinsic Monolayer Carbon Nitride. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44243-44253. [PMID: 34499461 DOI: 10.1021/acsami.1c10842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The photoreforming of lignocellulose is a novel method to produce clean and sustainable H2 energy. However, the catalytic systems usually show low activity under ultraviolet light; thus, this reaction is very limited at present. Visible light-responsive metal-free two-dimensional graphite-phased carbon nitride (g-C3N4) is a good candidate for photocatalytic hydrogen production, but its activity is hindered by a bulky architecture. Although reported layered g-C3N4 modified with active functional groups prepared by the chemical exfoliation enhances the photocatalytic activity, it lost the intrinsic structure and thus is not conducive to understand the structure-activity relationship. Herein, we report an intrinsic monolayer g-C3N4 (∼0.32 nm thickness) prepared by nitrogen-protected ball milling in water, which shows good performance of photoreforming lignocellulose to H2 driven by visible light. The exciton binding energy of g-C3N4 was estimated from the temperature-dependent photoluminescence spectra, which is a key factor for subsequent charge separation and energy transfer. It is found that monolayer g-C3N4 with smaller exciton binding energy increases the free exciton concentrations and promotes the separation efficiency of charge carriers, thereby effectively improving its performance of photocatalytic reforming of lignocellulose, even the virgin lignocellulose and waste lignocellulose. This result could lead to more active catalysts to photoreform the raw biomass, making it possible to provide clean energy directly from locally unused biomass.
Collapse
Affiliation(s)
- Cheng Rao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Maoliang Xie
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Sicong Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Runlin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Hang Su
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Lan Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|