1
|
Fang X, Yang L, Dai Z, Cong D, Zheng D, Yu T, Tu R, Zhai S, Yang J, Song F, Wu H, Deng W, Liu C. Poly(ionic liquid)s for Photo-Driven CO 2 Cycloaddition: Electron Donor-Acceptor Segments Matter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206687. [PMID: 36642842 PMCID: PMC10015876 DOI: 10.1002/advs.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
CO2 cycloaddition with epoxides is a key catalytic procedure for CO2 utilization. Several metal-based catalysts with cocatalysts are developed for photo-driven CO2 cycloaddition, while facing difficulties in product purification and continuous reaction. Here, poly(ionic liquid)s are proposed as metal-free catalysts for photo-driven CO2 cycloaddition without cocatalysts. A series of poly(ionic liquid)s with donor-acceptor segments are fabricated and their photo-driven catalytic performance (conversion rate of 83.5% for glycidyl phenyl ether) outstrips (≈4.9 times) their thermal-driven catalytic performance (17.2%) at the same temperature. Mechanism studies confirm that photo-induced charge separation is promoted by the donor-acceptor segments and can accelerate the CO2 cycloaddition reaction. This work paves the way for the further use of poly(ionic liquid)s as catalysts in photo-driven CO2 cycloaddition.
Collapse
Affiliation(s)
- Xu Fang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Li Yang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Zhangben Dai
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalianLiaoning116023China
| | - Die Cong
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Daoyuan Zheng
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Tie Yu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Rui Tu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Shengliang Zhai
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Junxia Yang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Fengling Song
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Hao Wu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Wei‐qiao Deng
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Chengcheng Liu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| |
Collapse
|
2
|
He P, Hu Z, Dai Z, Bai H, Fan Z, Niu R, Gong J, Zhao Q, Tang T. Mechanochemistry Milling of Waste Poly(Ethylene Terephthalate) into Metal-Organic Frameworks. CHEMSUSCHEM 2023; 16:e202201935. [PMID: 36441157 DOI: 10.1002/cssc.202201935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Converting poly(ethylene terephthalate) (PET) into metal-organic frameworks (MOFs) has emerged as a promising innovation for upcycling of waste plastics. However, previous solvothermal methods suffer from toxic solvent consumption, long reaction time, high pressure, and high temperature. Herein, a mechanochemical milling strategy was reported to transform waste PET into a series of MOFs with high yields. This strategy had the merits of solvent-free conditions, ambient reaction temperature, short running time, and easy scale-up for large-scale production of MOFs. The as-prepared MOFs exhibited definite crystal structure and porous morphology composed of agglomerated nanoparticles. It was proven that, under mechanochemical milling, PET was firstly decomposed into 1,4-benzenedicarboxylate, which acted as linkers to coordinate with metal ions for forming fragments, followed by the gradual arrangement of fragments into MOFs. This work not only promotes high value-added conversion of waste polyesters but also offers a new opportunity to produce MOFs in a green and scalable manner.
Collapse
Affiliation(s)
- Panpan He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Semiconductor Chemistry Center, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Zhen Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Semiconductor Chemistry Center, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Zhikun Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Semiconductor Chemistry Center, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 430073, Wuhan, P. R. China
| | - Huiying Bai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Semiconductor Chemistry Center, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Zifen Fan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Semiconductor Chemistry Center, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Semiconductor Chemistry Center, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Semiconductor Chemistry Center, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Semiconductor Chemistry Center, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| |
Collapse
|
3
|
Liu X, Yang Y, Chen M, Xu W, Chen K, Luo R. High-Surface-Area Metalloporphyrin-Based Porous Ionic Polymers by the Direct Condensation Strategy for Enhanced CO 2 Capture and Catalytic Conversion into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1085-1096. [PMID: 36538671 DOI: 10.1021/acsami.2c18283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metalloporphyrin-based porous organic polymers (POPs) that behave as advanced biomimetic nanoreactors have drawn continuous attention for heterogeneous CO2 catalysis in the past decades. Inspired by the double activation model of epoxides, the design and synthesis of metalloporphyrin-based porous ionic polymers (PIPs) are considered as one of the most promising approaches for converting CO2 to cyclic carbonates under cocatalyst- and solvent-free conditions. To overcome the obstacle of poor reaction activity of ionic monomers or highly irregular stacking architecture, in this paper, we have proposed and demonstrated a modular bottom-up approach for constructing a series of high-surface-area metalloporphyrin-based PIPs in high yields by the direct condensation strategy, thus boosting the close contact of multiple active sites and achieving the enhanced CO2 capture and catalytic conversion into cyclic carbonates with high turnover frequencies under mild conditions. These recyclable aluminum-porphyrin-based PIPs are featured with high surface areas, prominent CO2 adsorptive capacities, rigid porphyrin skeletons, and flexible ionic pendants, as well as the matched amounts and spatial positions of metal centers and ionic sites, in which is demonstrated to be one of the quite competitive catalysts. Therefore, this strategy of introducing ionic components into the porphyrin frameworks as flexible side chains rather than main chains and adjusting the reactivity ratios of comonomers by structure-oriented methods, provides feasible guidance for the multifunctionalization of metalloporphyrin-based POPs, thereby increasing the accessibility of multiple active sites and improving their synergistic catalytic behavior.
Collapse
Affiliation(s)
- Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
4
|
Wu J, Wang F, Fan X, Chu J, Cheng F, Hu F, Liu H, Zhang Q, Xu Z, Gong C. Phosphoric acid-doped Gemini quaternary ammonium-grafted SPEEK membranes with superhigh proton conductivity and mechanical strength for direct methanol fuel cells. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Xu X, Sui Y, Huang W, Chen W, Li X, Li Y, Wang G, Ye H, Zhong H. Upgraded Heterogenization of Homogeneous Catalytic Systems by Hollow Porous Organic Frameworks with Hierarchical Porous Shell for Efficient Carbon Dioxide Conversion. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiahong Xu
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yan Sui
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Wei Huang
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Wentong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Xiaodan Li
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yuntong Li
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Guanhui Wang
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Huixian Ye
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Hong Zhong
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| |
Collapse
|
6
|
Liu D, Hou S, Shu Y, Zhao J, Wang L, Zhang P. Mechanochemical NaCl–Mediated Synthesis of Porous Cu xMo 1–xO y Catalyst for Knoevenagel Condensation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dandan Liu
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Shengtai Hou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yuan Shu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jiahua Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Li Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|