Dileep NP, Patel J, Pushkar Y. Evaluation of Ce-MOFs as Photoanode Materials for the Water Oxidation Reaction: The Effect of Doping with [Ru(bpy)(dcbpy)(H
2O)
2]
2+ Catalyst.
Inorg Chem 2024;
63:8050-8058. [PMID:
38662572 DOI:
10.1021/acs.inorgchem.3c04632]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Artificial photosynthesis stands out as a highly effective method for harnessing sunlight to produce clean and renewable energy. The light-absorbing properties, chemical stability, and high redox activity of Ce-based metal-organic frameworks (MOFs) make them attractive materials for visible-light-driven water splitting. Currently, Ce-based MOFs remain a relatively underexplored system for photocatalytic water oxidation in acidic media. In this study, we synthesized a Ce-MOF with different linkers (1,4-benzenedicarboxylic acid, tetrafluoroterephthalic acid, 2-nitroterephthalic acid, 2,2'-bipyridine-5,5'-dicarboxylic acid, and 4,4'-biphenyldicarboxylic acid), which exhibit light-absorbing capability. Ce-based MOFs doped with [Ru(bpy)(dcbpy)(H2O)2]2+ (MOF-1 and MOF-2) water oxidation catalyst showed an enhanced photoelectrocatalytic current of ∼10-4 A·cm-2 at pH = 1, which is comparable with the [Ru(bpy)(dcbpy)(H2O)2]2+-doped MIL-126 Fe-based MOF. We also demonstrated the long-term durability of Ru-doped Ce-MOFs for photoelectrocatalytic water oxidation under acidic conditions. The as-synthesized MOFs were analyzed with powder X-ray diffraction (PXRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM), and electric conductivity measurements. This study contributes to the development of cost-effective materials for sustainable photocatalytic water splitting processes.
Collapse