1
|
Lv T, Yang X, Zhang Y, Wang X, Qiu J. Fabrication of Soft-Hard Heterostructure Porous Carbon with Enhanced Performance for High Mass-Loading Aqueous Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310645. [PMID: 38389177 DOI: 10.1002/smll.202310645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/11/2024] [Indexed: 02/24/2024]
Abstract
With the increasing attention to energy and environmental issues, the high value-added utilization of biomass and pitch to functional carbon materials has become an important topic in science and technology. In this work, the soft-hard heterostructure porous carbon (NRP-HPC) is prepared by bio-template method, in which biomass and pitch are used as hard carbon and soft carbon precursors, respectively. The prepared NRP-HPC-4 shows high specific surface area (2293 m2 g-1), suitable pore size distribution, good conductivity (0.25 Ω cm-1), and strong wettability. The synergistic effect of soft carbon and hard carbon ensures the composite material exhibiting excellent electrochemical performance for high mass loading (12.0 mg cm-2) aqueous supercapacitor, i.e., high specific capacitance (304.69 F g-1 at 0.1 A g-1), high area capacitance (3.67 F cm-2 at 0.1 A g-1), high volumetric specific capacitance (202.74 F cm-3 at 0.1 A g-1), low open-circuit voltage attenuation rate (21.04 mV h-1), good voltage retention (79.12%), and excellent cyclic stability (92.04% capacitance retention and 100% coulombic efficiency after 20 000 cycles). The composite technology of soft carbon and hard carbon not only ensures the prepared porous carbon electrode materials with enhanced electrochemical performance, but also realizes the high value-added coupling utilization of biomass and pitch.
Collapse
Affiliation(s)
- Ting Lv
- College of Chemistry, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiaomin Yang
- College of Chemistry, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Ying Zhang
- College of Chemistry, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiaofeng Wang
- College of Chemistry, Electron Microscopy Center, Jilin University, Changchun, 130012, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Lin X, Zhang J, Yan H, Xu J, Miao Z, Shu G, Zhao S, Zhang T, Yu H, Yan L, Zhang L, Shu J. A triple-synergistic small-molecule sulfur cathode promises energetic Cu-S electrochemistry. Proc Natl Acad Sci U S A 2023; 120:e2312091120. [PMID: 37812706 PMCID: PMC10589612 DOI: 10.1073/pnas.2312091120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
Metal-sulfur batteries have received great attention for electrochemical energy storage due to high theoretical capacity and low cost, but their further development is impeded by low sulfur utilization, poor electrochemical kinetics, and serious shuttle effect of the sulfur cathode. To avoid these problems, herein, a triple-synergistic small-molecule sulfur cathode is designed by employing N, S co-doped hierarchical porous bamboo charcoal as a sulfur host in an aqueous Cu-S battery. Expect the enhanced conductivity and chemisorption induced by N, S synergistic co-doping, the intrinsic synergy of macro-/meso-/microporous triple structure also ensures space-confined small-molecule sulfur as high utilization reactant and effectively alleviates the volume expansion during conversion reaction. Under a further joint synergy between hierarchical structure and heteroatom doping, the resulting sulfur cathode endows the Cu-S battery with outstanding electrochemical performance. Cycled at 5 A g-1, it can deliver a high reversible capacity of 2,509.8 mAh g-1 with a good capacity retention of 97.9% after 800 cycles. In addition, a flexible hybrid pouch cell built by a small-molecule sulfur cathode, Zn anode, and gel electrolytes can firmly deliver high average operating voltage of about 1.3 V with a reversible capacity of over 2,500 mAh g-1 under various destructive conditions, suggesting that the triple-synergistic small-molecule sulfur cathode promises energetic metal-sulfur batteries.
Collapse
Affiliation(s)
- Xia Lin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Junwei Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Huihui Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Jiaxi Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Zhonghao Miao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Guangchang Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Shuyuan Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Tianyuan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Haoxiang Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Lei Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Liyuan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| | - Jie Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China
| |
Collapse
|
3
|
Qin Z, Ye Y, Zhang D, He J, Zhou J, Cai J. One/Two-Step Contribution to Prepare Hierarchical Porous Carbon Derived from Rice Husk for Supercapacitor Electrode Materials. ACS OMEGA 2023; 8:5088-5096. [PMID: 36777617 PMCID: PMC9909822 DOI: 10.1021/acsomega.2c07932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Grain processing generates vast amounts of agricultural byproducts, and biomass porous carbon electrode materials based on this have attracted broad research interests. Rice husk (RH) is one of the promising feedstocks owing to its good abundance and cheap price. Here, a RH-based porous carbon (RHPC) material was successfully prepared using first-step carbonization and second-step decalcification. The influence of carbonization temperature and decalcification treatment on the structure and electrochemical properties of the RH-based carbon materials were investigated. Thermogravimetric analysis, hydrogen element analysis, scanning electron microscopy, X-ray diffraction, and electrochemical performance tests were used to characterize and analyze the prepared RH-based carbon materials. After carbonization at 1000 °C (RH-1000) and decalcification treatment, RHPC-1000 showed the highest specific surface area of 643.48 m3/g and the largest pore volume of 0.52 cm3/g, which were about 1.8 times and 2.5 times that of RH-1000, respectively. RHPC-1000 also possessed a high capacitance retention capability of 97.2% after 10 000 charge-discharge cycles. The results demonstrated the excellent capacitive behavior and superior electrochemical performance of RHPC-1000. In summary, this study reveals a simple and effective preparation method of biomass porous carbon for supercapacitor electrode materials and provides new insight into the high-value utilization of waste biomass resources.
Collapse
Affiliation(s)
- Zhiqin Qin
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Yuanyuan Ye
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Die Zhang
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| | - Jiangling He
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaojiao Zhou
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| |
Collapse
|
4
|
Guo T, Zhang R, Wang X, Kong L, Xu J, Xiao H, Bedane AH. Porous Structure of β-Cyclodextrin for CO 2 Capture: Structural Remodeling by Thermal Activation. Molecules 2022; 27:7375. [PMID: 36364201 PMCID: PMC9657893 DOI: 10.3390/molecules27217375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2023] Open
Abstract
With a purpose of extending the application of β-cyclodextrin (β-CD) for gas adsorption, this paper aims to reveal the pore formation mechanism of a promising adsorbent for CO2 capture which was derived from the structural remodeling of β-CD by thermal activation. The pore structure and performance of the adsorbent were characterized by means of SEM, BET and CO2 adsorption. Then, the thermochemical characteristics during pore formation were systematically investigated by means of TG-DSC, in situ TG-FTIR/FTIR, in situ TG-MS/MS, EDS, XPS and DFT. The results show that the derived adsorbent exhibits an excellent porous structure for CO2 capture accompanied by an adsorption capacity of 4.2 mmol/g at 0 °C and 100 kPa. The porous structure is obtained by the structural remodeling such as dehydration polymerization with the prior locations such as hydroxyl bonded to C6 and ring-opening polymerization with the main locations (C4, C1, C5), accompanied by the release of those small molecules such as H2O, CO2 and C3H4. A large amount of new fine pores is formed at the third and fourth stage of the four-stage activation process. Particularly, more micropores are created at the fourth stage. This revealed that pore formation mechanism is beneficial to structural design of further thermal-treated graft/functionalization polymer derived from β-CD, potentially applicable for gas adsorption such as CO2 capture.
Collapse
Affiliation(s)
- Tianxiang Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Runan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xilai Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lingfeng Kong
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Junpeng Xu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Alemayehu Hailu Bedane
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|