1
|
Le DD, Nguyen TH, Nguyen LT, Le Nguyen DA, Thi Le MN, Nguyen KD, Phan HB, Tran PH. Boron-doped sulfonated graphitic carbon nitride as a highly efficient catalyst for the production of 5-hydroxymethylfurfural from carbohydrates. Heliyon 2024; 10:e37812. [PMID: 39315136 PMCID: PMC11417182 DOI: 10.1016/j.heliyon.2024.e37812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
The presence of humins during the conversion of concentrated fructose presents a major obstacle in the large-scale production of 5-hydroxymethylfurfural (HMF) from fructose. Herein, we reported a boron-doped graphitic carbon nitride sulfonated (BGCN-SO3H) as an excellent catalyst for the synthesis of HMF from fructose. The BGCN-SO3H catalyst structures were analyzed using various characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), elemental mapping analysis, and Fourier-transform infrared spectroscopy (FT-IR). The BGCN-SO3H catalyst was evaluated for the synthesis of HMF from fructose. We investigated the influence of catalyst performance, including solvent reactions, catalyst loading, substrates, and volume of solvent to optimize reaction conditions. As a result, the yield of HMF was obtained at 88 % within 5 h when using 30 mg of catalyst. The study of catalyst activity involved examining reactions that allowed recovery and reuse. The research findings offer a method for producing HMF with exceptional efficiency using solid catalysts.
Collapse
Affiliation(s)
- Diep Dinh Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Luc Tan Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Dao Anh Le Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Mai Ngoc Thi Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Khoa Dang Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Ha Bich Phan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
- Institute of Public Health, Ho Chi Minh City, Viet Nam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
2
|
Arias KS, Hurtado B, Climent MJ, Iborra S, Corma A. Noble-Metal-Free Carbon Encapsulated CoNi Alloy Catalyst for the Hydrogenation of 5-(Hydroxymethyl) Furfural to Tetrahydrofurandiol in Aqueous Media. Chempluschem 2024; 89:e202300643. [PMID: 38230921 DOI: 10.1002/cplu.202300643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/18/2024]
Abstract
The selective hydrogenation of 5-(hydroxymethyl)furfural (HMF) into 2,5-bis-(hydroxymethyl)tetrahydrofuran (BHMTHF) in flow reactor using water as a green solvent, has been achieved on a non-noble metal catalyst based on monodispersed CoNi alloy nanoparticles covered by a thin carbon layer. The alloyed catalyst containing CoNi (molar ratio 1 : 1) was prepared in a one-step synthesis following a hydrothermal method. Total conversion of HMF with 91 % selectivity to BHMTHF was achieved. The reaction network has been stablished, in which the carbonyl group of HMF is first reduced to alcohol giving the 2,5-bis-(hydroxymethyl)furan (BHMF) with an apparent activation energy of 25 KJ/mol, and then the double bonds of the furan ring are hydrogenated (apparent Ea=31 KJ/mol). Formation of byproducts, mainly proceed from furan ring opening and ring rearrangement processes of BHMF, promoted by water. BHMTHF resulted a compound highly stable under reaction conditions. The fixed bed flow reactor was maintained operational for 65 h without observing any loss of catalytic activity and selectivity.
Collapse
Affiliation(s)
- Karen S Arias
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Beatriz Hurtado
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Maria J Climent
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| |
Collapse
|