1
|
Fan Q, Zhang J, Fan S, Xi B, Gao Z, Guo X, Duan Z, Zheng X, Liu Y, Xiong S. Advances in Functional Organosulfur-Based Mediators for Regulating Performance of Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409521. [PMID: 39246200 DOI: 10.1002/adma.202409521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Rechargeable lithium metal batteries (LMBs) are promising next-generation energy storage systems due to their high theoretical energy density. However, their practical applications are hindered by lithium dendrite growth and various intricate issues associated with the cathodes. These challenges can be mitigated by using organosulfur-based mediators (OSMs), which offer the advantages of abundance, tailorable structures, and unique functional adaptability. These features enable the rational design of targeted functionalities, enhance the interfacial stability of the lithium anode and cathode, and accelerate the redox kinetics of electrodes via alternative reaction pathways, thereby effectively improving the performance of LMBs. Unlike the extensively explored field of organosulfur cathode materials, OSMs have garnered little attention. This review systematically summarizes recent advancements in OSMs for various LMB systems, including lithium-sulfur, lithium-selenium, lithium-oxygen, lithium-intercalation cathode batteries, and other LMB systems. It briefly elucidates the operating principles of these LMB systems, the regulatory mechanisms of the corresponding OSMs, and the fundamentals of OSMs activity. Ultimately, strategic optimizations are proposed for designing novel OSMs, advanced mechanism investigation, expanded applications, and the development of safe battery systems, thereby providing directions to narrow the gap between rational modulation of organosulfur compounds and their practical implementation in batteries.
Collapse
Affiliation(s)
- Qianqian Fan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Junhao Zhang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Siying Fan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Baojuan Xi
- College of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhiyuan Gao
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xingmei Guo
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Zhongyao Duan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xiangjun Zheng
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Yuanjun Liu
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Shenglin Xiong
- College of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Yu P, An J, Wang Z, Fu Y, Guo W. An Organic Molecular Cathode Composed of Naphthoquinones Bridged by Organodisulfide for Rechargeable Lithium Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308881. [PMID: 37984861 DOI: 10.1002/smll.202308881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Organic electrodes that embrace multiple electron transfer and efficient redox reactions are desirable for green energy storage batteries. Here, a novel organic electrode material is synthesized, i.e., 2, 2'-((disulfanediylbis (4, 1-phenylene)) bis(azanediyl)) bis (naphthalene-1, 4-dione) (MNQ), through a simple click reaction between common carbonyl and organosulfur compounds and demonstrate its application potential as a high-performance cathode material in rechargeable lithium batteries. MNQ exhibits the aggregation effect of redox-active functional groups, the advantage of fast reaction kinetics from molecular structure evolution, and the decreased solubility in aprotic electrolytes resulting from intermolecular interactions. As expected, the MNQ electrode exhibits a high initial discharge capacity of 281.2 mA h g-1 at 0.5 C, equivalent to 97.9% of its theoretical capacity, and sustains stable long-term cycling performance of over 1000 cycles at 1 C. This work adds a new member to the family of organic electrode materials, providing performance-efficient organic molecules for the design of rechargeable battery systems, which will undoubtedly spark great interest in their applications.
Collapse
Affiliation(s)
- Pei Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaxuan An
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhongju Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Sang P, Chen Q, Wang DY, Guo W, Fu Y. Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application. Chem Rev 2023; 123:1262-1326. [PMID: 36757873 DOI: 10.1021/acs.chemrev.2c00739] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Lithium-ion batteries have received significant attention over the last decades due to the wide application of portable electronics and increasing deployment of electric vehicles. In order to further enhance the performance of the batteries and overcome the capacity limitations of inorganic electrode materials, it is imperative to explore new cathode and functional materials for rechargeable lithium batteries. Organosulfur materials containing sulfur-sulfur bonds as a kind of promising organic electrode materials have the advantages of high capacities, abundant resources, tunable structures, and environmental benignity. In addition, organosulfur materials have been widely used in almost every aspect of rechargeable batteries because of their multiple functionalities. This review aims to provide a comprehensive overview on the development of organosulfur materials including the synthesis and application as cathode materials, electrolyte additives, electrolytes, binders, active materials in lithium redox flow batteries, and other metal battery systems. We also give an in-depth analysis of structure-property-performance relationship of organosulfur materials, and guidance for the future development of organosulfur materials for next generation rechargeable lithium batteries and beyond.
Collapse
Affiliation(s)
- Pengfei Sang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiliang Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dan-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|