1
|
De Nardi F, Gorreta G, Meazzo C, Parisotto S, Blangetti M, Prandi C. Wittig Reaction in Deep Eutectic Solvents: Expanding the DES Toolbox in Synthesis. Chemistry 2024; 30:e202402090. [PMID: 38945826 DOI: 10.1002/chem.202402090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/02/2024]
Abstract
Wittig reaction between substituted phosphonium salts and (hetero)aromatic and alkyl carbonyl compounds in Deep Eutectic Solvents has been developed under a scalable and friendly protocol. Highly efficient reactions were successfully run with a wide range of bases including organic (DBU, LiTMP, t-BuOK) and inorganic (NaOH, K2CO3) ones in ChCl/Gly 1 : 2 (mol/mol) as solvent under mild conditions, at room temperature and under air. The proposed protocol was applied to a wide range of substrates, including (hetero)aromatic aldehydes with substituents as halogens (I, Br, Cl), EDG (alkoxy, methyl), EWG (NO2, CF3) or reactive groups as CN, esters, and ketones. Vinylic, alkynyl and cycloalkyl, alicyclic and α,β-unsaturated aldehydes can also be used. Highly electrophilic ketones gave good yields. The diastereoselectivity of the reaction is in complete agreement with the E/Z ratio predictable under traditional conditions. We demonstrated that the protocol is scalable to 2 g (5 mmol) of phosphonium salt, furthermore the proposed workup protocol allows to remove TPPO without need of additional chromatographic purification.
Collapse
Affiliation(s)
- Federica De Nardi
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Giulia Gorreta
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Carolina Meazzo
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Stefano Parisotto
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| |
Collapse
|
2
|
Lin X, Li Y, Xu Z, Yu S, Feng J, Diao A, Yao P, Wu Q, Zhu D. Engineered Imine Reductase for Asymmetric Synthesis of Dextromethorphan Key Intermediate. Org Lett 2024; 26:4463-4468. [PMID: 38747552 DOI: 10.1021/acs.orglett.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
(S)-1-(4-Methoxybenzyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline ((S)-1-(4-methoxybenzyl)-OHIQ) is the key intermediate of the nonopioid antitussive dextromethorphan. In this study, (S)-IR61-V69Y/P123A/W179G/F182I/L212V (M4) was identified with a 766-fold improvement in catalytic efficiency compared with wide-type IR61 through enzyme engineering. M4 could completely convert 200 mM of 1-(4-methoxybenzyl)-3,4,5,6,7,8-hexahydroisoquinoline into (S)-1-(4-methoxybenzyl)-OHIQ in 77% isolated yield, with >99% enantiomeric excess and a high space-time yield of 542 g L-1 day-1, demonstrating a great potential for the synthesis of dextromethorphan intermediate in industrial applications.
Collapse
Affiliation(s)
- Xiaofeng Lin
- School of Biotechnology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yixuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zefei Xu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shanshan Yu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aipo Diao
- School of Biotechnology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peiyuan Yao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaqing Wu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dunming Zhu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Domingues L, Duarte ARC, Jesus AR. How Can Deep Eutectic Systems Promote Greener Processes in Medicinal Chemistry and Drug Discovery? Pharmaceuticals (Basel) 2024; 17:221. [PMID: 38399436 PMCID: PMC10892015 DOI: 10.3390/ph17020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Chemists in the medicinal chemistry field are constantly searching for alternatives towards more sustainable and eco-friendly processes for the design and synthesis of drug candidates. The pharmaceutical industry is one of the most polluting industries, having a high E-factor, which is driving the adoption of more sustainable processes not only for new drug candidates, but also in the production of well-established active pharmaceutical ingredients. Deep eutectic systems (DESs) have emerged as a greener alternative to ionic liquids, and their potential to substitute traditional organic solvents in drug discovery has raised interest among scientists. With the use of DESs as alternative solvents, the processes become more attractive in terms of eco-friendliness and recyclability. Furthermore, they might be more effective through making the process simpler, faster, and with maximum efficiency. This review will be focused on the role and application of deep eutectic systems in drug discovery, using biocatalytic processes and traditional organic chemical reactions, as new environmentally benign alternative solvents. Furthermore, herein we also show that DESs, if used in the pharmaceutical industry, may have a significant effect on lowering production costs and decreasing the impact of this industry on the quality of the environment.
Collapse
Affiliation(s)
| | | | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, School of Science and Technology, NOVA University, 2829-516 Caparica, Portugal; (L.D.); (A.R.C.D.)
| |
Collapse
|