1
|
Mouton W, Conrad A, Alcazer V, Boccard M, Bodinier M, Oriol G, Subtil F, Labussière-Wallet H, Ducastelle-Lepretre S, Barraco F, Balsat M, Fossard G, Brengel-Pesce K, Ader F, Trouillet-Assant S. Distinct Immune Reconstitution Profiles Captured by Immune Functional Assays at 6 Months Post Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:94.e1-94.e13. [PMID: 36336259 DOI: 10.1016/j.jtct.2022.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Immune reconstitution after allogeneic-hematopoietic-stem-cell transplantation (allo-HSCT) is a complex and individual process. In this cross-sectional study, whole-blood (WB) immune functional assay (IFA) was used to characterize immune function by assessing immune-related gene/pathway alterations. The usefulness of this tool in the context of infection, 6 months after transplantation, was evaluated. Sixty allo-HSCT recipients at 6 months after transplantation and 10 healthy volunteers (HV) were included. WB was stimulated in standardized TruCulture tubes using lipopolysaccharides and Staphylococcal enterotoxin B. Gene expression was quantified using a custom 144-gene panel using NanoString nCounter technology and analyzed using Ingenuity Pathway Analysis. The relationships between immune function and clinical characteristics, immune cell counts, and post-transplantation infections were assessed. Allo-HSCT recipients were able to activate similar networks of the innate and adaptive immune response compared to HV, with, nevertheless, a lower intensity. A reduced number and a lower expression of genes associated with immunoregulatory and inflammatory processes were observed in allo-HSCT recipients. The use of immunosuppressive treatments was associated with a protracted immune reconstitution revealed by transcriptomic immunoprofiling. No difference in immune cell counts was observed among patients receiving or not receiving immunosuppressive treatments using a large immunophenotyping panel. Moreover, the expression of a set of genes, including CCL3/CCL4, was significantly lower in patients with Herpesviridae reactivation (32%, 19/60), which once again was not identified using classical immune cell counts. Transcriptional IFA revealed the heterogeneity among allo-HSCT recipients with a reduced immune function, a result that could not be captured by circulating immune cell counts. This highlights the potential added value of this tool for the personalized care of immunocompromised patients.
Collapse
Affiliation(s)
- William Mouton
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Virology and Human Pathology - Virpath Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France
| | - Anne Conrad
- Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France; Claude Bernard Lyon I University, Villeurbanne, France
| | - Vincent Alcazer
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; LIB TEAM, International Centre for Research in Infectiology (CIRI), Oullins, France
| | - Mathilde Boccard
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France
| | - Maxime Bodinier
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Guy Oriol
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Fabien Subtil
- Biostatistics Department, Hospices Civils de Lyon, Lyon France, Lyon 1 University, Villeurbanne, France; CNRS, Biometrics and Evolutionary Biology Laboratory UMR, Villeurbanne, France
| | - Hélène Labussière-Wallet
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | | | - Fiorenza Barraco
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Marie Balsat
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Gaëlle Fossard
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Florence Ader
- Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France; Claude Bernard Lyon I University, Villeurbanne, France.
| | - Sophie Trouillet-Assant
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Virology and Human Pathology - Virpath Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
2
|
Wang J, Tu C, Zhang H, Huo Y, Menu E, Liu J. Single-cell analysis at the protein level delineates intracellular signaling dynamic during hematopoiesis. BMC Biol 2021; 19:201. [PMID: 34503511 PMCID: PMC8428103 DOI: 10.1186/s12915-021-01138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hematopoietic stem and progenitor cell (HSPC) subsets in mice have previously been studied using cell surface markers, and more recently single-cell technologies. The recent revolution of single-cell analysis is substantially transforming our understanding of hematopoiesis, confirming the substantial heterogeneity of cells composing the hematopoietic system. While dynamic molecular changes at the DNA/RNA level underlying hematopoiesis have been extensively explored, a broad understanding of single-cell heterogeneity in hematopoietic signaling programs and landscapes, studied at protein level and reflecting post-transcriptional processing, is still lacking. Here, we accurately quantified the intracellular levels of 9 phosphorylated and 2 functional proteins at the single-cell level to systemically capture the activation dynamics of 8 signaling pathways, including EGFR, Jak/Stat, NF-κB, MAPK/ERK1/2, MAPK/p38, PI3K/Akt, Wnt, and mTOR pathways, during mouse hematopoiesis using mass cytometry. RESULTS With fine-grained analyses of 3.2 million of single hematopoietic stem and progenitor cells (HSPCs), and lineage cells in conjunction with multiparameter cellular phenotyping, we mapped trajectories of signaling programs during HSC differentiation and identified specific signaling biosignatures of cycling HSPC and multiple differentiation routes from stem cells to progenitor and lineage cells. We also investigated the recovery pattern of hematopoietic cell populations, as well as signaling regulation in these populations, during hematopoietic reconstruction. Overall, we found substantial heterogeneity of pathway activation within HSPC subsets, characterized by diverse patterns of signaling. CONCLUSIONS These comprehensive single-cell data provide a powerful insight into the intracellular signaling-regulated hematopoiesis and lay a solid foundation to dissect the nature of HSC fate decision. Future integration of transcriptomics and proteomics data, as well as functional validation, will be required to verify the heterogeneity in HSPC subsets during HSC differentiation and to identify robust markers to phenotype those HSPC subsets.
Collapse
Affiliation(s)
- Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongliang Huo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Gjaerde LK, Brooks PT, Andersen NS, Friis LS, Kornblit B, Petersen SL, Schjødt I, Nielsen SD, Ostrowski SR, Sengeløv H. Functional immune reconstitution early after allogeneic haematopoietic cell transplantation: A comparison of pre- and post-transplantation cytokine responses in stimulated whole blood. Scand J Immunol 2021; 94:e13042. [PMID: 33772836 DOI: 10.1111/sji.13042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023]
Abstract
We aimed to use a novel standardized whole-blood stimulation system to evaluate differences in the functional immune reconstitution in patients early after allogeneic haematopoietic cell transplantation (HCT). Between April and September 2018, 30 patients undergoing HCT had whole blood samples collected around day -21 (day 0 being the day of haematopoietic cell infusion) and day +28. Whole blood was transferred to TruCulture assays comprising prefilled incubation tubes with cell culture medium and a standardized stimulus. We used a panel of four stimuli (lipopolysaccharide, resiquimod, heat-killed Candida albicans and polyinosinic:polycytidylic acid) and a blank, designed to evaluate the function of critical extra- and intracellular immunological signalling pathways. For each stimulus, the cytokine response was assessed by the concentration of interferon-γ, interleukin (IL)-12p40, IL-10, IL-1β, IL-6, IL-8, IL-10, IL-12p40, IL-17A and tumour necrosis factor-α using a multiplex Luminex assay. Pre-HCT cytokine responses were globally decreased across several different stimuli. Despite patients receiving immunosuppressive prophylaxis at the time, post-HCT cytokine responses were higher and less intercorrelated than pre-HCT responses, also after adjusting for differences in the leukocyte differential counts. For the resiquimod and heat-killed Candida albicans stimuli, we identified a cluster of patients in whom post-HCT responses were lower than average across several cytokines, indicating a possible functional immune deficiency. Our findings suggest that the standardized whole blood stimulation system can be used to reveal heterogeneity in the in vitro cytokine responses to various stimuli after HCT. Larger studies are needed to address if the functional immune reconstitution after HCT can predict the risk of infections.
Collapse
Affiliation(s)
- Lars Klingen Gjaerde
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Terrence Brooks
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels Smedegaard Andersen
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lone Smidstrup Friis
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Brian Kornblit
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren Lykke Petersen
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ida Schjødt
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Denmark of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Sengeløv
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|