1
|
Giarola JF, Soler M, Estevez MC, Tarasova A, Le Poder S, Wasniewski M, Decaro N, Lechuga LM. Validation of a plasmonic-based serology biosensor for veterinary diagnosis of COVID-19 in domestic animals. Talanta 2024; 271:125685. [PMID: 38262129 DOI: 10.1016/j.talanta.2024.125685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic recently demonstrated the devastating impact on public health, economy, and social development of zoonotic infectious diseases, whereby viruses jump from animals to infect humans. Due to this potential of viruses to cross the species barrier, the surveillance of infectious pathogens circulation in domestic and close-to-human animals is indispensable, as they could be potential reservoirs. Optical biosensors, mainly those based on Surface Plasmon Resonance (SPR), have widely demonstrated its ability for providing direct, label-free, and quantitative bioanalysis with excellent sensitivity and reliability. This biosensor technology can provide a powerful tool to the veterinary field, potentially being helpful for the monitoring of the infection spread. We have implemented a multi-target COVID-19 serology plasmonic biosensor for the rapid testing and screening of common European domestic animals. The multi-target serological biosensor assay enables the detection of total SARS-CoV-2 antibodies (IgG + IgM) generated towards both S and N viral antigens. The analysis is performed in less than 15 min with a low-volume serum sample (<20 μL, 1:10 dilution), reaching a limit of detection of 49.6 ng mL-1. A complete validation has been carried out with hamster, dog, and cat sera samples (N = 75, including 37 COVID-19-positive and 38 negative samples). The biosensor exhibits an excellent diagnostic sensitivity (100 %) and good specificity (71.4 %) for future application in veterinary settings. Furthermore, the biosensor technology is integrated into a compact, portable, and user-friendly device, well-suited for point-of-care testing. This study positions our plasmonic biosensor as an alternative and reliable diagnostic tool for COVID-19 serology in animal samples, expanding the applicability of plasmonic technologies for decentralized analysis in veterinary healthcare and animal research.
Collapse
Affiliation(s)
- Juliana Fátima Giarola
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, 08193, Bellaterra, Barcelona, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, 08193, Bellaterra, Barcelona, Spain.
| | - M-Carmen Estevez
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, 08193, Bellaterra, Barcelona, Spain
| | - Anna Tarasova
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, 08193, Bellaterra, Barcelona, Spain
| | - Sophie Le Poder
- UMR Virologie, INRAE, ANSES, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Marine Wasniewski
- Interfas Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, 54220, Malzéville, France
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70121, Bari, Italy
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Costa JNY, Pimentel GJC, Poker JA, Merces L, Paschoalino WJ, Vieira LCS, Castro ACH, Alves WA, Ayres LB, Kubota LT, Santhiago M, Garcia CD, Piazzetta MHO, Gobbi AL, Shimizu FM, Lima RS. Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag. Adv Healthc Mater 2024; 13:e2303509. [PMID: 38245830 PMCID: PMC11468374 DOI: 10.1002/adhm.202303509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.
Collapse
Affiliation(s)
- Juliana N. Y. Costa
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Júlia A. Poker
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Leandro Merces
- Research Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Waldemir J. Paschoalino
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Luis C. S. Vieira
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Ana C. H. Castro
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Wendel A. Alves
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Lucas B. Ayres
- Department of ChemistryClemson UniversityClemsonSC29634USA
| | - Lauro T. Kubota
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | | | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Flávio M. Shimizu
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
- Department of ChemistryClemson UniversityClemsonSC29634USA
- São Carlos Institute of ChemistryUniversity of São PauloSão CarlosSão Paulo13565‐590Brazil
| |
Collapse
|
3
|
Martos G, Bedu M, Josephs RD, Westwood S, Wielgosz RI. Quantification of SARS-CoV-2 monoclonal IgG mass fraction by isotope dilution mass spectrometry. Anal Bioanal Chem 2024:10.1007/s00216-024-05205-z. [PMID: 38427100 DOI: 10.1007/s00216-024-05205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
The availability of serology assays to measure antibodies against the SARS coronavirus 2 (SARS-CoV-2) expanded rapidly during the Covid-19 pandemic. The interchangeable use of such assays to monitor disease progression and immune protection requires their standardization, for which suitably characterized monoclonal antibody materials can be useful. The methods, based on isotope dilution mass spectrometry, to value assign the mass fraction of such a material in solution within the context of an international interlaboratory comparison study (CCQM-P216) are described. The mass fraction in solution of a humanized IgG monoclonal antibody (mAb) against the SARS-CoV-2 Spike glycoprotein in the study sample has been value assigned through a combination of liquid chromatography, isotope dilution mass spectrometry (LC-ID-MS) methods and size exclusion chromatography with UV detection (SEC-UV). The former were developed for the quantification of amino acids and proteotypic peptides as surrogate analytes of the mAb while the latter was applied for the determination of the relative monomeric mass fraction. High-resolution mass spectrometry (hrMS) allowed the molecular weight evaluation and ruled out the presence of significant impurities. Method trueness was assessed using a subclass homologous IgG1 material value assigned by amino acid analysis. The assigned mass fraction of monomeric SARS-CoV-2 IgG in solution was 390 ± 16 mg/g. The associated expanded uncertainty originated mainly from acid hydrolysis variability and Trypsin/Lys-C digestion variability and efficiency.
Collapse
Affiliation(s)
- G Martos
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France.
| | - M Bedu
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - R D Josephs
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - S Westwood
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - R I Wielgosz
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| |
Collapse
|
4
|
Mazzaracchio V, Rios Maciel M, Porto Santos T, Toda-Peters K, Shen AQ. Duplex Electrochemical Microfluidic Sensor for COVID-19 Antibody Detection: Natural versus Vaccine-Induced Humoral Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207731. [PMID: 36916701 DOI: 10.1002/smll.202207731] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The rapid transmission and resilience of coronavirus disease 2019 (COVID-19) have led to urgent demands in monitoring humoral response for effective vaccine development, thus a multiplex co-detection platform to discriminate infection-induced from vaccine-induced antibodies is needed. Here a duplex electrochemical immunosensor for co-detection of anti-nucleocapsid IgG (N-IgG) and anti-spike IgG (S-IgG) is developed by using a two-working electrode system, via an indirect immunoassay, with antibody quantification obtained by differential pulse voltammetry. The screen-printed electrodes (SPEs) are modified by carbon black and electrodeposited gold nanoflowers for maximized surface areas, enabling the construction of an immunological chain for S-IgG and N-IgG electrochemical detection with enhanced performance. Using an optimized immunoassay protocol, a wide linear range between 30-750 and 20-1000 ng mL-1 , and a limit of detection of 28 and 15 ng mL-1 are achieved to detect N-IgG and S-IgG simultaneously in serum samples. This duplex immunosensor is then integrated in a microfluidic device to obtain significantly reduced detection time (≤ 7 min) while maintaining its analytical performance. The duplex microfluidic immunosensor can be easily expanded into multiplex format to achieve high throughput screening for the sero-surveillance of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Vincenzo Mazzaracchio
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Mauricio Rios Maciel
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Tatiana Porto Santos
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Kazumi Toda-Peters
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
5
|
Fish CS, Owiti P, Begnel ER, Itell HL, Ojee E, Adhiambo J, Ogweno V, Holland LA, Richardson BA, Khan AK, Maqsood R, Gantt S, Lim ES, Slyker J, Kinuthia J, Overbaugh J, Wamalwa D, Lehman DA, Chohan BH. Comparison of nucleocapsid and spike antibody ELISAs for determining SARS-CoV-2 seropositivity in Kenyan women and infants. J Med Virol 2023; 95:e28221. [PMID: 36251533 PMCID: PMC9839577 DOI: 10.1002/jmv.28221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
A multitude of enzyme-linked immunosorbent assays (ELISAs) has been developed to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies since the coronavirus disease 2019 pandemic started in late 2019. Assessing the reliability of these assays in diverse global populations is critical. This study compares the use of the commercially available Platelia Total Ab Assay (Bio-Rad) nucleocapsid ELISA to the widely used Mount Sinai spike IgG ELISA in a Kenyan population seroprevalence study. Using longitudinal plasma specimens collected from a mother-infant cohort living in Nairobi, Kenya between May 2019 and December 2020, this study demonstrates that the two assays have a high qualitative agreement (92.7%) and strong correlation of antibody levels (R2 = 0.973) in repeated measures. Within this cohort, seroprevalence detected by either ELISA closely resembled previously published seroprevalence estimates for Kenya during the sampling period and no significant difference in the incidence of SARS-CoV-2 antibody detection by either assay was observed. Assay comparability was not affected by HIV exposure status. These data support the use of the Platelia SARS-CoV-2 Total Ab ELISA as a suitable high-throughput method for seroprevalence studies in Kenya.
Collapse
Affiliation(s)
- Carolyn S. Fish
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Prestone Owiti
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya
| | - Emily R. Begnel
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Hannah L. Itell
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleWashingtonUSA,Molecular and Cellular Biology Graduate ProgramUniversity of Washington and Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Ednah Ojee
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya
| | - Judith Adhiambo
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya
| | - Vincent Ogweno
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Barbra A. Richardson
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA,Department of BiostatisticsUniversity of WashingtonSeattleWashingtonUSA
| | - Adam K. Khan
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du CHU St‐JustineUniversité de MontréalMontréalQuébecCanada
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State UniversityTempeArizonaUSA,School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Jennifer Slyker
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA,Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - John Kinuthia
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA,Department of Research and Programs, Kenyatta National HospitalNairobiKenya
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleWashingtonUSA,Division of Public Health SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Dalton Wamalwa
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya,Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Dara A. Lehman
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleWashingtonUSA,Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Bhavna H. Chohan
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA,Kenya Medical Research InstituteNairobiKenya
| |
Collapse
|
6
|
Hirabidian M, Bocket L, Demaret J, Vuotto F, Rabat A, Faure K, Labalette M, Hober D, Lefevre G, Alidjinou EK. Evaluation of a rapid semiquantitative lateral flow assay for the prediction of serum neutralizing activity against SARS-CoV-2 variants. J Clin Virol 2022; 155:105268. [PMID: 35998394 PMCID: PMC9383946 DOI: 10.1016/j.jcv.2022.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/08/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022]
Abstract
Background Neutralizing antibodies (NAbs) against SARS-CoV-2 have been shown to correlate with protection against infection. Simple tools such as lateral flow assays (LFA) that can accurately measure NAbs may be useful for monitoring anti-SARS-CoV-2 immunity in the future. Objectives We assessed the performance of the ichroma™ COVID-19 nAb test, a rapid semiquantitative LFA, for the prediction of serum neutralizing activity against SARS-CoV-2 variants. Study design Serum samples were collected from COVID-19 recovered patients and vaccinated individuals. The result of the ichroma assay was provided as inhibition rate, and was compared to anti-SARS-CoV-2 IgG levels, and NAbs against Alpha, Delta and Omicron variants. Results A total of 90 sera from recovered unvaccinated patients and 209 sera from the vaccine cohort were included in this study. In post-infection samples, the ichroma inhbition rate was found to be correlated with IgG levels (ρ = 0.83), and with anti-Alpha NAbs levels (ρ = 0.78). In the vaccine cohort, a good correlation was also observed between the ichroma inhibition rate and IgG levels (ρ = 0.84), as well as NAbs against Alpha (ρ = 0.62), Delta (ρ = 0.88) and Omicron (ρ = 0.74). An ichroma inhbition rate of 77.2%, 90.8% and 99.6% accurately predicted neutralization against Alpha, Delta and Omicron variants respectively. Conclusions The ichroma™ COVID-19 nAb assay, with appropriate variant cut-offs, can be useful for the monitoring of anti-SARS-CoV-2 immunization and may provide a rapid prediction of protection, especially in individuals with significant levels of NAbs.
Collapse
Affiliation(s)
- Mickael Hirabidian
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
| | - Laurence Bocket
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
| | - Julie Demaret
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, F-59000, Lille, France
| | - Fanny Vuotto
- CHU Lille, Département de Maladies Infectieuses, F-59000 Lille France
| | - Anthony Rabat
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
| | - Karine Faure
- CHU Lille, Département de Maladies Infectieuses, F-59000 Lille France
| | - Myriam Labalette
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, F-59000, Lille, France
| | - Didier Hober
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
| | - Guillaume Lefevre
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, F-59000, Lille, France
| | | |
Collapse
|