1
|
Deng K, Lu G. Immune dysregulation as a driver of bronchiolitis obliterans. Front Immunol 2024; 15:1455009. [PMID: 39742269 PMCID: PMC11685133 DOI: 10.3389/fimmu.2024.1455009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Bronchiolitis obliterans (BO) is a disease characterized by airway obstruction and fibrosis that can occur in all age groups. Bronchiolitis obliterans syndrome (BOS) is a clinical manifestation of BO in patients who have undergone lung transplantation or hematopoietic stem cell transplantation. Persistent inflammation and fibrosis of small airways make the disease irreversible, eventually leading to lung failure. The pathogenesis of BO is not entirely clear, but immune disorders are commonly involved, with various immune cells playing complex roles in different BO subtypes. Accordingly, the US Food and Drug Administration (FDA) has recently approved several new drugs that can alleviate chronic graft-versus-host disease (cGVHD) by regulating the function of immune cells, some of which have efficacy specifically with cGVHD-BOS. In this review, we will discuss the roles of different immune cells in BO/BOS, and introduce the latest drugs targeting various immune cells as the main target. This study emphasizes that immune dysfunction is an important driving factor in its pathophysiology. A better understanding of the role of the immune system in BO will enable the development of targeted immunotherapies to effectively delay or even reverse this condition.
Collapse
Affiliation(s)
| | - Gen Lu
- Department of Respiration, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Teper A, Colom AJ, Schubert R, Jerkic PS. Update in postinfectious bronchiolitis obliterans. Pediatr Pulmonol 2024; 59:2338-2348. [PMID: 37378463 DOI: 10.1002/ppul.26570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Postinfectious bronchiolitis obliterans (PiBO) is a rare and severe form of chronic obstructive lung disease caused by an infectious injury to the lower respiratory tract. The most commonly recognized inciting stimuli leading to PiBO are airway pathogens, such as adenovirus and Mycoplasma. PiBO is characterized by persistent and nonreversible airway obstruction, with functional and radiological evidence of small airway involvement. The literature has limited information on the aetiology, clinical profile, treatment, and outcome of PiBO.
Collapse
Affiliation(s)
- Alejandro Teper
- Respiratory Center, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Alejandro J Colom
- Respiratory Center, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Pera-Silvija Jerkic
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
3
|
Gronau L, Duecker RP, Jerkic SP, Eickmeier O, Trischler J, Chiocchetti AG, Blumchen K, Zielen S, Schubert R. Dual Role of microRNA-146a in Experimental Inflammation in Human Pulmonary Epithelial and Immune Cells and Expression in Inflammatory Lung Diseases. Int J Mol Sci 2024; 25:7686. [PMID: 39062931 PMCID: PMC11276706 DOI: 10.3390/ijms25147686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
microRNA (miR)-146a emerges as a promising post-transcriptional regulator in various inflammatory diseases with different roles for the two isoforms miR-146a-5p and miR-146a-3p. The present study aimed to examine the dual role of miR-146a-5p and miR-146a 3p in the modulation of inflammation in human pulmonary epithelial and immune cells in vitro as well as their expression in patients with inflammatory lung diseases. Experimental inflammation in human A549, HL60, and THP1 via the NF-kB pathway resulted in the major upregulation of miR-146a-5p and miR-146a-3p expression, which was partly cell-specific. Modulation by transfection with miRNA mimics and inhibitors demonstrated an anti-inflammatory effect of miR-146a-5p and a pro-inflammatory effect of miR-146a-3p, respectively. A mutual interference between miR-146a-5p and miR-146a-3p was observed, with miR-146a-5p exerting a predominant influence. In vivo NGS analyses revealed an upregulation of miR-146a-3p in the blood of patients with cystic fibrosis and bronchiolitis obliterans, while miR-146a-5p levels were downregulated or unchanged compared to controls. The reverse pattern was observed in patients with SARS-CoV-2 infection. In conclusion, miR-146a-5p and miR-146a-3p are two distinct but interconnected miRNA isoforms with opposing functions in inflammation regulation. Understanding their interaction provides important insights into the progression and persistence of inflammatory lung diseases and might provide potential therapeutic options.
Collapse
Affiliation(s)
- Lucia Gronau
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Ruth P. Duecker
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Silvija-Pera Jerkic
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Olaf Eickmeier
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Jordis Trischler
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Katharina Blumchen
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Stefan Zielen
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany;
| | - Ralf Schubert
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| |
Collapse
|
4
|
Li M, Yang J, Wu Y, Ma X. miR-186-5p improves alveolar epithelial barrier function by targeting the wnt5a/β-catenin signaling pathway in sepsis-acute lung injury. Int Immunopharmacol 2024; 131:111864. [PMID: 38484663 DOI: 10.1016/j.intimp.2024.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Alveolar epithelial barrier dysfunction is one of the pathological features of sepsis-acute lung injury(ALI). However, the molecular mechanisms that regulate the function of alveolar epithelial barrier remain unclear. This study aimed to determine the regulatory role of miR-186-5p in alveolar epithelial barrier function in sepsis-ALI and its underlying molecular mechanism. METHODS We established sepsis-ALI models in vivo and in vitro, detected the miR-186-5p and wnt5a/β-catenin expressions, and observed the functional changes of the alveolar epithelial barrier by miR-186-5p overexpression. We used rescue experiments to clarify whether miR-186-5p works through wnt5a/β-catenin. RESULTS miR-186-5p expression was decreased, wnt5a expression was increased, and the wnt5a/β-catenin signaling pathway was activated in mouse lung tissues and A549 cells after inflammatory stimulation. miR-186-5p overexpression resulted in wnt5a/β-catenin signaling pathway inhibition, decreased apoptosis in A549 cells, improved alveolar epithelial barrier function, reduced lung tissue injury in ALI mice, decreased IL-6 and TNF-α levels, and increased claudin4 and ZO-1 expression. Using miRNA-related database prediction and dual-luciferase reporter gene analysis, the targeting relationship between miR-186-5p and wnt5a was determined. The protective effect produced by miR-186-5p overexpression on the alveolar barrier was reversed after the application of the wnt5a/β-catenin activator Licl. CONCLUSION Our experimental data suggest miR-186-5p targets the wnt5a/β-catenin pathway, thereby regulating alveolar epithelial barrier function. Furthermore, both miR-186-5p and wnt5a/β-catenin are potential therapeutic targets that could impact sepsis-ALI.
Collapse
Affiliation(s)
- Mei Li
- Ningxia Medical University, Yinchuan, China; Department of Critical Care Medicine, Harrison International Peace Hospital, Hengshui, China.
| | - Jing Yang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Yanli Wu
- Ningxia Medical University, Yinchuan, China.
| | - Xigang Ma
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
5
|
Duecker RP, Alemdar O, Wimmers A, Gronau L, Chiocchetti AG, Valesky EM, Donath H, Trischler J, Blumchen K, Zielen S, Schubert R. MicroRNA Profiling of the Inflammatory Response after Early and Late Asthmatic Reaction. Int J Mol Sci 2024; 25:1356. [PMID: 38279356 PMCID: PMC10817008 DOI: 10.3390/ijms25021356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
A high proportion of house dust mite (HDM)-allergic asthmatics suffer from both an early asthmatic reaction (EAR) and a late asthmatic reaction (LAR) which follows it. In these patients, allergic inflammation is more relevant. MiRNAs have been shown to play an important role in the regulation of asthma's pathology. The aim of this study was to analyze the miRNA profile in patients with mild asthma and an HDM allergy after bronchial allergen provocation (BAP). Seventeen patients with EAR/no LAR and 17 patients with EAR plus LAR, determined by a significant fall in FEV1 after BAP, were differentially analyzed. As expected, patients with EAR plus LAR showed a more pronounced allergic inflammation and FEV1 delta drop after 24 h. NGS-miRNA analysis identified the down-regulation of miR-15a-5p, miR-15b-5p, and miR-374a-5p after BAP with the highest significance in patients with EAR plus LAR, which were negatively correlated with eNO and the maximum decrease in FEV1. These miRNAs have shared targets like CCND1, VEGFA, and GSK3B, which are known to be involved in airway remodeling, basement membrane thickening, and Extracellular Matrix deposition. NGS-profiling identified miRNAs involved in the inflammatory response after BAP with HDM extract, which might be useful to predict a LAR.
Collapse
Affiliation(s)
- Ruth P. Duecker
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
| | - Oguzhan Alemdar
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Andreas Wimmers
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Lucia Gronau
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Eva M. Valesky
- Department of Dermatology, Venerology and Allergology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Helena Donath
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
| | - Jordis Trischler
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
| | - Katharina Blumchen
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
| | - Stefan Zielen
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Ralf Schubert
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (O.A.); (A.W.); (L.G.); (H.D.); (J.T.); (K.B.); (S.Z.); (R.S.)
| |
Collapse
|
6
|
Nag S, Mitra O, Tripathi G, Samanta S, Bhattacharya B, Chandane P, Mohanto S, Sundararajan V, Malik S, Rustagi S, Adhikari S, Mohanty A, León‐Figueroa DA, Rodriguez‐Morales AJ, Barboza JJ, Sah R. Exploring the theranostic potentials of miRNA and epigenetic networks in autoimmune diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e1121. [PMID: 38156400 PMCID: PMC10755504 DOI: 10.1002/iid3.1121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Autoimmune diseases (AD) are severe pathophysiological ailments that are stimulated by an exaggerated immunogenic response towards self-antigens, which can cause systemic or site-specific organ damage. An array of complex genetic and epigenetic facets majorly contributes to the progression of AD, thus providing significant insight into the regulatory mechanism of microRNA (miRNA). miRNAs are short, non-coding RNAs that have been identified as essential contributors to the post-transcriptional regulation of host genome expression and as crucial regulators of a myriad of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. AIMS This article tends to deliberate and conceptualize the brief pathogenesis and pertinent epigenetic regulatory mechanism as well as miRNA networks majorly affecting five different ADs namely rheumatoid arthritis (RA), type 1 diabetes, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and inflammatory bowel disorder (IBD) thereby providing novel miRNA-based theranostic interventions. RESULTS & DISCUSSION Pertaining to the differential expression of miRNA attributed in target tissues and cellular bodies of innate and adaptive immunity, a paradigm of scientific expeditions suggests an optimistic correlation between immunogenic dysfunction and miRNA alterations. CONCLUSION Therefore, it is not astonishing that dysregulations in miRNA expression patterns are now recognized in a wide spectrum of disorders, establishing themselves as potential biomarkers and therapeutic targets. Owing to its theranostic potencies, miRNA targets have been widely utilized in the development of biosensors and other therapeutic molecules originating from the same.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Oishi Mitra
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Garima Tripathi
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Souvik Samanta
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Bikramjit Bhattacharya
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Department of Applied MicrobiologyVellore Institute of Technology (VIT)Tamil NaduIndia
| | - Priti Chandane
- Department of BiochemistrySchool of Life SciencesUniversity of HyderabadHyderabadTelanganaIndia
| | - Sourav Mohanto
- Department of PharmaceuticsYenepoya Pharmacy College & Research CentreYenepoya (Deemed to be University)MangaluruKarnatakaIndia
| | - Vino Sundararajan
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Sumira Malik
- Amity Institute of BiotechnologyAmity University JharkhandRanchiJharkhandIndia
- University Centre for Research and DevelopmentUniversity of Biotechnology, Chandigarh University, GharuanMohaliPunjab
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | | | - Aroop Mohanty
- Department of Clinical MicrobiologyAll India Institute of Medical SciencesGorakhpurUttar PradeshIndia
| | | | - Alfonso J. Rodriguez‐Morales
- Clinical Epidemiology and Biostatistics, School of MedicineUniversidad Científica del SurLimaPeru
- Gilbert and Rose‐Marie Chagoury School of MedicineLebanese American UniversityBeirutLebanon
| | | | - Ranjit Sah
- Department of Clinical MicrobiologyInstitute of Medicine, Tribhuvan University Teaching HospitalKathmanduNepal
- Department of Clinical MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneIndia
- Department of Public Health DentistryDr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
7
|
Zhang Y, Chen J, He S, Xiao Y, Liu A, Zhang D, Li X. Systematic identification of aberrant non-coding RNAs and their mediated modules in rotator cuff tears. Front Mol Biosci 2022; 9:940290. [PMID: 36111133 PMCID: PMC9470226 DOI: 10.3389/fmolb.2022.940290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Rotator cuff tears (RCT) is the most common cause of shoulder dysfunction, however, its molecular mechanisms remain unclear. Non-coding RNAs(ncRNAs), such as long ncRNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA), are involved in a variety of diseases, but little is known about their roles in RCT. Therefore, the purpose of this study is to identify dysregulated ncRNAs and understand how they influence RCT. Methods: We performed RNA sequencing and miRNA sequencing on five pairs of torn supraspinatus muscles and matched unharmed subscapularis muscles to identify RNAs dysregulated in RCT patients. To better comprehend the fundamental biological processes, we carried out enrichment analysis of these dysregulated mRNAs or the co-expressed genes of dysregulated ncRNAs. According to the competing endogenous RNA (ceRNA) theory, we finally established ceRNA networks to explore the relationship among dysregulated RNAs in RCT. Results: A total of 151 mRNAs, 38 miRNAs, 20 lncRNAs and 90 circRNAs were differentially expressed between torn supraspinatus muscles and matched unharmed subscapularis muscles, respectively. We found that these dysregulated mRNAs, the target mRNAs of these dysregulated miRNAs or the co-expressed mRNAs of these dysregulated ncRNAs were enriched in muscle structure development, actin-mediated cell contraction and actin binding. Then we constructed and analyzed the ceRNA network and found that the largest module in the ceRNA network was associated with vasculature development. Based on the topological properties of the largest module, we identified several important ncRNAs including hsa_circ_0000722, hsa-miR-129-5p and hsa-miR-30c-5p, whose interacting mRNAs related to muscle diseases, fat and inflammation. Conclusion: This study presented a systematic dissection of the expression profile of mRNAs and ncRNAs in RCT patients and revealed some important ncRNAs which may contribute to the development of RCT. Such results could provide new insights for further research on RCT.
Collapse
Affiliation(s)
- Yichong Zhang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University), Peking University People’s Hospital, Beijing, China
| | - Jianhai Chen
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University), Peking University People’s Hospital, Beijing, China
| | - Shengyuan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Aiyu Liu
- Central Laboratory, Peking University People’s Hospital, Beijing, China
| | - Dianying Zhang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University), Peking University People’s Hospital, Beijing, China
- *Correspondence: Dianying Zhang, ; Xia Li,
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Dianying Zhang, ; Xia Li,
| |
Collapse
|
8
|
The role of microRNA-30c in targeting interleukin 6, as an inflammatory cytokine, in the mesenchymal stem cell: a therapeutic approach in colorectal cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04123-w. [PMID: 35876950 DOI: 10.1007/s00432-022-04123-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most prevalent cancer and the second significant cause of cancer-associated death worldwide. The microRNA-30 is a substantial member of the miRNA family and plays a vital role in expanding several cancers. This microRNA potentially targets interleukin 6 as an inflammatory cytokine in CRC. MATERIALS AND METHODS MSCs were isolated and identified from mice bone marrow and then transduced with lentiviruses containing miR-30C. Transfected MSCs were collected to evaluate IL-6 levels, CT-26 cells were also co-cultured with MSCs, and the effect of apoptosis and IL-6 on the supernatant was assessed. RESULTS Our result showed the expression of IL-6 mRNA and the level of protein were decreased in the supernatant of miR-30-transduced MSC cells compared to the control group. In addition, the rate of apoptosis was assessed, and the obtained data revealed the induction of apoptosis in CT-26 cells when they are in the vicinity of miR-30c-transduced MSCs. DISCUSSION AND CONCLUSION We demonstrated that downregulation of miR-30c was significantly correlated with CRC progression and survival. So, the present study elucidated the anticancer effects of miR-30c in CRC and presented a novel target for CRC therapy.
Collapse
|