1
|
Liu S, Ji H, Zhang T, Huang J, Yin X, Zhang J, Wang P, Wang F, Tang X. Modified Zuojin pill alleviates gastric precancerous lesions by inhibiting glycolysis through the HIF-1α pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156255. [PMID: 39603037 DOI: 10.1016/j.phymed.2024.156255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Gastric precancerous lesions (GPL) typically originates from chronic gastritis (CG), and the changes in glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL are unclear. Modified Zuojin pill (SQQT) is a traditional Chinese herbal formula used for treating GPL. However, the underlying mechanism has not been fully elucidated. PURPOSE To investigate the changes in glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL and whether SQQT can alleviate GPL by attenuating glycolysis through the HIF-1α pathway. METHODS A rat model of GPL was established, and the changes of glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL were detected in 12th, 18th, 24th, and 30th weeks. The therapeutic efficacy of SQQT was evaluated through pathological changes. In vitro, the GPL cell model (MC cell) originated from GES-1 cells intervened by MNNG. The effects of SQQT on glycolysis and the HIF-1α pathway were detected in vivo and in vitro. In vitro, HIF-1α overexpression was used to confirmed that SQQT attenuated glycolysis by targeting the HIF-1α pathway. RESULTS Our study revealed that glycolysis mediated by the HIF-1α pathway exhibited dynamic changes in the progression from CG to GPL, characterized by sequential activation, deactivation, and reactivation. SQQT ameliorated gastric mucosal pathology and inflammation in GPL rats. Mechanistic studies revealed that SQQT alleviated glycolysis by targeting the HIF-1α pathway, and improved abnormal cellular proliferation and apoptosis. Importantly, HIF-1α overexpression blocked the effect of SQQT on glycolysis. CONCLUSION In the progression from CG to GPL, the HIF-1α pathway-mediated glycolysis was characterized by sequential activation, deactivation, and reactivation. SQQT attenuated glycolysis by targeting the HIF-1α pathway and improved abnormal cellular proliferation and apoptosis in the gastric mucosa, thereby exerting therapeutic effects on GPL.
Collapse
Affiliation(s)
- Shan Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Haijie Ji
- Shanxi Province Academy of Traditional Chinese Medicine, Taiyuan 030012, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China; Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China
| | - Jinke Huang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiaolan Yin
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
2
|
Xiao Y, Ren Y, Hu W, Paliouras AR, Zhang W, Zhong L, Yang K, Su L, Wang P, Li Y, Ma M, Shi L. Long non-coding RNA-encoded micropeptides: functions, mechanisms and implications. Cell Death Discov 2024; 10:450. [PMID: 39443468 PMCID: PMC11499885 DOI: 10.1038/s41420-024-02175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are typically described as RNA transcripts exceeding 200 nucleotides in length, which do not code for proteins. Recent advancements in technology, including ribosome RNA sequencing and ribosome nascent-chain complex sequencing, have demonstrated that many lncRNAs retain small open reading frames and can potentially encode micropeptides. Emerging studies have revealed that these micropeptides, rather than lncRNAs themselves, are responsible for vital functions, including but not limited to regulating homeostasis, managing inflammation and the immune system, moderating metabolism, and influencing tumor progression. In this review, we initially outline the rapidly advancing computational analytical methods and public tools to predict and validate the potential encoding of lncRNAs. We then focus on the diverse functions of micropeptides and their underlying mechanisms in the pathogenesis of disease. This review aims to elucidate the functions of lncRNA-encoded micropeptides and explore their potential applications as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenteng Hu
- Thoracic surgery department, The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | | | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Su
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, PR China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Minjie Ma
- Thoracic surgery department, The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
Rong S, Dai B, Yang C, Lan Z, Wang L, Xu L, Chen W, Chen J, Wu Z. HNRNPC modulates PKM alternative splicing via m6A methylation, upregulating PKM2 expression to promote aerobic glycolysis in papillary thyroid carcinoma and drive malignant progression. J Transl Med 2024; 22:914. [PMID: 39380010 PMCID: PMC11459990 DOI: 10.1186/s12967-024-05668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The heterogeneous nuclear ribonucleoprotein C (HNRNPC) plays a crucial role in tumorigenesis, yet its role in papillary thyroid carcinoma (PTC) remains elusive. Herein, we elucidated the function and molecular mechanism of HNRNPC in PTC tumorigenesis and progression. Our study unveiled a significant upregulation of HNRNPC in PTC, and knockdown of HNRNPC markedly inhibited the proliferation, invasion, and metastasis of BCPAP cells. Furthermore, HNRNPC modulated PKM alternative splicing in BCPAP cells primarily through m6A modification. Additionally, by upregulating PKM2 expression, HNRNPC promoted aerobic glycolysis in BCPAP cells, thereby facilitating malignant progression in PTC. In summary, our findings demonstrate that HNRNPC regulates PKM alternative splicing through m6A methylation modification and promotes the proliferation, invasion and metastasis of PTC through glucose metabolism pathways mediated by PKM2. These discoveries provide new biomarkers for screening and diagnosing PTC patients and offer novel therapeutic targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Shikuo Rong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Thyroid Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Bao Dai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunrong Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziteng Lan
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linhe Wang
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zeyu Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Ahmadpour Youshanlui M, Yari A, Bahojb Mahdavi SZ, Amini M, Baradaran B, Ahangar R, Pourbagherian O, Mokhtarzadeh AA. BRD4 expression and its regulatory interaction with miR-26a-3p, DLG5-AS1, and JMJD1C-AS1 lncRNAs in gastric cancer progression. Discov Oncol 2024; 15:356. [PMID: 39152304 PMCID: PMC11329449 DOI: 10.1007/s12672-024-01230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Gastric cancer remains a significant health challenge despite advancements in diagnosis and treatment. Early detection is critical to reducing mortality, necessitating the investigation of molecular mechanisms underlying gastric cancer progression. This study focuses on BRD4 expression and its correlation with miR-26a-3p, DLG5-AS1, and JMJD1C-AS1 lncRNAs in gastric cancer. Analysis of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed significant upregulation of BRD4 in gastric cancer tissues compared to normal tissues, correlating negatively with miR-26a-3p and positively with DLG5-AS1 and JMJD1C-AS1 lncRNAs. Quantitative RT-PCR confirmed these findings in 25 gastric cancer tissue samples and 25 normal samples. BRD4's overexpression was associated with reduced survival rates and older patient age. MiR-26a-3p, a known tumor suppressor, showed decreased expression in gastric cancer tissues, with ROC analysis suggesting it, alongside BRD4, as a potential diagnostic biomarker. Additionally, bioinformatics predicted miR-26a-3p's interaction with BRD4 mRNA. Upregulated lncRNAs DLG5-AS1 and JMJD1C-AS1 likely act as competing endogenous RNAs, sponging miR-26a-3p, thus promoting BRD4 dysregulation. These lncRNAs have not been previously studied in gastric cancer. The findings propose a novel BRD4/lncRNA/miRNA regulatory axis in gastric cancer, highlighting the potential of BRD4, DLG5-AS1, and JMJD1C-AS1 as biomarkers for early diagnosis. Further studies with larger sample sizes and in vivo and in vitro experiments are needed to elucidate this regulatory mechanism's role in gastric cancer progression.
Collapse
Affiliation(s)
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Rihan M, Sharma SS. Compound 3K attenuates isoproterenol-induced cardiac hypertrophy by inhibiting pyruvate kinase M2 (PKM2) pathway. Life Sci 2024; 351:122837. [PMID: 38879156 DOI: 10.1016/j.lfs.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Chronic sympathetic stimulation has been identified as a primary factor in the pathogenesis of cardiac hypertrophy (CH). However, there is no appropriate treatment available for the management of CH. Recently, it has been revealed that pyruvate kinase M2 (PKM2) plays a significant role in cardiac remodeling, fibrosis, and hypertrophy. However, the therapeutic potential of selective PKM2 inhibitor has not yet been explored in cardiac hypertrophy. Thus, in the current study, we have studied the cardioprotective potential of Compound 3K, a selective PKM2 inhibitor in isoproterenol-induced CH model. METHODS To induce cardiac hypertrophy, male Wistar rats were subcutaneously administered isoproterenol (ISO, 5 mg/kg/day) for 14 days. Compound 3K at dosages of 2 and 4 mg/kg orally was administered to ISO-treated rats for 14 days to explore its effects on various parameters like ECG, ventricular functions, hypertrophic markers, histology, inflammation, and protein expression were performed. RESULTS Fourteen days administration of ISO resulted in the induction of CH, which was evidenced by alterations in ECG, ventricular dysfunctions, increase in hypertrophy markers, and fibrosis. The immunoblotting of hypertrophy heart revealed the significant rise in PKM2 and reduction in PKM1 protein expression. Treatment with Compound 3K led to downregulation of PKM2 and upregulation of PKM1 protein expression. Compound 3K showed cardioprotective effects by improving ECG, cardiac functions, hypertrophy markers, inflammation, and fibrosis. Further, it also reduced cardiac expression of PKM2-associated splicing protein, HIF-1α, and caspase-3. CONCLUSION Our findings suggest that Compound 3K has a potential cardioprotective effect via PKM2 inhibition in isoproterenol-induced CH.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India.
| |
Collapse
|
6
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
7
|
Duan Y, Yan Y, Fu H, Dong Y, Li K, Ye Z, Dou Y, Huang B, Kang W, Wei GH, Cai Q, Xu D, Zhou D. SNHG15-mediated feedback loop interplays with HNRNPA1/SLC7A11/GPX4 pathway to promote gastric cancer progression. Cancer Sci 2024; 115:2269-2285. [PMID: 38720175 PMCID: PMC11247605 DOI: 10.1111/cas.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 07/13/2024] Open
Abstract
Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghao Yan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zaisheng Ye
- Department of Gastrointestinal Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Binhao Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center; MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Donglei Zhou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Yao Y, Chen X, Wang X, Li H, Zhu Y, Li X, Xiao Z, Zi T, Qin X, Zhao Y, Yang T, Wang L, Wu G, Fang X, Wu D. Glycolysis related lncRNA SNHG3 / miR-139-5p / PKM2 axis promotes castration-resistant prostate cancer (CRPC) development and enzalutamide resistance. Int J Biol Macromol 2024; 260:129635. [PMID: 38266860 DOI: 10.1016/j.ijbiomac.2024.129635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Although androgen deprivation therapy (ADT) by the anti-androgen drug enzalutamide (Enz) may improve the survival level of patients with castration-resistant prostate cancer (CRPC), most patients may eventually fail due to the acquired resistance. The reprogramming of glucose metabolism is one type of the paramount hallmarks of cancers. PKM2 (Pyruvate kinase isozyme typeM2) is a speed-limiting enzyme in the glycolytic mechanism, and has high expression in a variety of cancers. Emerging evidence has unveiled that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have impact on tumor development and therapeutic efficacy by regulating PKM2 expression. Herein, we found that lncRNA SNHG3, a highly expressed lncRNA in CRPC via bioinformatics analysis, promoted the invasive ability and the Enz resistance of the PCa cells. KEGG pathway enrichment analysis indicated that glucose metabolic process was tightly correlated with lncRNA SNHG3 level, suggesting lncRNA SNHG3 may affect glucose metabolism. Indeed, glucose uptake and lactate content determinations confirmed that lncRNA SNHG3 promoted the process of glycolysis. Mechanistic dissection demonstrated that lncRNA SNHG3 facilitated the advance of CRPC by adjusting the expression of PKM2. Further explorations unraveled the role of lncRNA SNHG3 as a 'sponge' of miR-139-5p and released its binding with PKM2 mRNA, leading to PKM2 up-regulation. Together, Our studies suggest that lncRNA SNHG3 / miR-139-5p / PKM2 pathway promotes the development of CRPC via regulating glycolysis process and provides valuable insight into a novel therapeutic approach for the disordered disease.
Collapse
Affiliation(s)
- Yicong Yao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Haopeng Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaru Zhu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Xilei Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhihui Xiao
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Tong Zi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Xin Qin
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Zhao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Licheng Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Gang Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Xia Fang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
9
|
He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X, Zheng S. Positioning determines function: Wandering PKM2 performs different roles in tumor cells. Cell Biol Int 2024; 48:20-30. [PMID: 37975488 DOI: 10.1002/cbin.12103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Short for pyruvate kinase M2 subtype, PKM2 can be said of all-round player that is notoriously known for its metabolic involvement in glycolysis. Holding a dural role as a metabolic or non-metabolic (kinase) enzyme, PKM2 has drawn extensive attention over its biological roles implicated in tumor cells, including proliferation, migration, invasion, metabolism, and so on. wandering PKM2 can be transboundary both intracellularly and extracellularly. Specifically, PKM2 can be nuclear, cytoplasmic, mitochondrial, exosomal, or even circulate within the body. Importantly, PKM2 can function as an RNA-binding protein (RBP) to self-support its metabolic function. Despite extensive investigations or reviews available surrounding the biological roles of PKM2 from different angles in tumor cells, little has been described regarding some novel role of PKM2 that has been recently found, including, for example, acting as RNA-binding protein, protection of Golgi apparatus, and remodeling of microenvironment, and so forth. Given these findings, in this review, we summarize the recent advancements made in PKM2 research, mainly from non-metabolic respects. By the way, PKM1, another paralog of PKM2, seems to have been overlooked or under-investigated since its discovery. Some recent discoveries made about PKM1 are also preliminarily mentioned and discussed.
Collapse
Affiliation(s)
- Shuo He
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| |
Collapse
|
10
|
Xie M, Zhang L, Han L, Huang L, Huang Y, Yang M, Zhang N. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene 2023; 42:3435-3445. [PMID: 37805663 DOI: 10.1038/s41388-023-02855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Gastric cancer (GC) is one of the most leading cause of malignancies. However, the molecular mechanisms underlying stomach carcinogenesis remain incompletely understood. Dysregulated genetic and epigenetic alternations significantly contribute to GC development. Here, we report that ASH1L and its antisense lncRNA ASH1L-AS1, which are transcribed from the most significant GC-risk signal at 1q22, act as novel oncogenes. The high levels of ASH1L or lncRNA ASH1L-AS1 expression in GC specimens are associated with worse prognosis of patients. In line with this, ASH1L and ASH1L-AS1 are functionally important in promoting GC disease progression. LncRNA ASH1L-AS1 up-regulates ASH1L transcription, increases histone methyltransferase ASH1L expression and elevates genome-wide H3K4me3 modification levels in GC cells. Furthermore, ASH1L-AS1 directly interacts with transcription factor NME1 protein to form the ASH1L-AS1-NME1 ribonucleoprotein, which transcriptionally promotes expression of ASH1L, ASH1L-AS1, KRAS and RAF1, and activates the RAS signaling pathway in GC cells. Taken together, our data demonstrated that the ASH1L-AS1-ASH1L regulatory axis controls histone modification reprogram and activation of the RAS signaling in cancers. Thus, ASH1L-AS1 might be a novel targets of GC therapeutics and diagnosis in the clinic.
Collapse
Affiliation(s)
- Mengyu Xie
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Nasha Zhang
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
11
|
Zhang C, Wang H, Liu Q, Dai S, Tian G, Wei X, Li X, Zhao L, Shan B. LncRNA CCAT1 facilitates the progression of gastric cancer via PTBP1-mediated glycolysis enhancement. J Exp Clin Cancer Res 2023; 42:246. [PMID: 37740243 PMCID: PMC10517515 DOI: 10.1186/s13046-023-02827-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most prevalent malignant tumors of the digestive system. As a hallmark of cancer, energy-related metabolic reprogramming is manipulated by multiple factors, including long non-coding RNAs (lncRNAs). Notably, lncRNA CCAT1 has been identified as a crucial regulator in tumor progression. Nevertheless, the precise molecular mechanisms underlying the involvement of CCAT1 in metabolic reprogramming of GC remain unclear. METHODS Gain- and loss-of-function experiments were performed to evaluate the roles of CCAT1 in tumorigenesis and glycolysis of GC. Bioinformatics analyses and mechanistic experiments, such as mass spectrometry (MS), RNA-pulldown, and RNA immunoprecipitation (RIP), were employed to reveal the potential interacting protein of CCAT1 and elucidate the regulatory mechanism of CCAT1 in GC glycolysis. Moreover, the nude mice xenograft assay was used to evaluate the effect of CCAT1 on GC cells in vivo. RESULTS In this study, we identified that CCAT1 expression was significantly elevated in the tissues and plasma exosomes of GC patients, as well as GC cell lines. Functional experiments showed that the knockdown of CCAT1 resulted in a substantial decrease in the proliferation, migration and invasion of GC cells both in vitro and in vivo through decreasing the expression of glycolytic enzymes and glycolytic rate. Conversely, overexpression of CCAT1 exhibited contrasting effects. Mechanistically, CCAT1 interacted with PTBP1 and effectively maintained its stability by inhibiting the ubiquitin-mediated degradation process. As a critical splicing factor, PTBP1 facilitated the transition from PKM1 to PKM2, thereby augmenting the glycolytic activity of GC cells and ultimately fostering the progression of GC. CONCLUSIONS Our findings demonstrate that CCAT1 plays a significant role in promoting the proliferation, migration, and invasion of GC cells through the PTBP1/PKM2/glycolysis pathway, thus suggesting CCAT1's potential as a biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Cong Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Shijiazhuang, 050001, Hebei, China
| | - Huixia Wang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Shijiazhuang, 050001, Hebei, China
| | - Qingwei Liu
- Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Suli Dai
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Shijiazhuang, 050001, Hebei, China
| | - Guo Tian
- Medical Records Department, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Xintong Wei
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Shijiazhuang, 050001, Hebei, China
| | - Xiaoya Li
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Shijiazhuang, 050001, Hebei, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China.
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Shijiazhuang, 050001, Hebei, China.
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China.
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Shijiazhuang, 050001, Hebei, China.
| |
Collapse
|
12
|
Chen Y, Guo Y, Yuan M, Guo S, Cui S, Chen D. USP4 promotes the proliferation and glucose metabolism of gastric cancer cells by upregulating PKM2. PLoS One 2023; 18:e0290688. [PMID: 37624791 PMCID: PMC10456134 DOI: 10.1371/journal.pone.0290688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The pyruvate kinase enzyme PKM2 catalyzes the final step in glycolysis and converts phosphoenolpyruvate (PEP) to pyruvate. PKM2 is often overexpressed in cancer and plays a role in the Warburg effect. The expression of PKM2 can be regulated at different levels. While it has been proven that PKM2 can be regulated by ubiquitination, little is known about its de-ubiquitination regulation. METHODS Immunoprecipitation was applied to identify the PKM2 interaction protein and to determine the interaction region between PKM2 and USP4. Immunofluorescence was performed to determine the cellular localization of USP4 and PKM2. The regulation of PKM2 by USP4 was examined by western blot and ubiquitination assay. MTT assays, glucose uptake, and lactate production were performed to analyze the biological effects of USP4 in gastric cancer cells. RESULTS USP4 interacts with PKM2 and catalyzes the de-ubiquitination of PKM2. Overexpression of USP4 promotes cell proliferation, glucose uptake, and lactate production in gastric cancer cells. Knockdown of USP4 reduces PKM2 levels and results in a reduction in cell proliferation and the glycolysis rate. CONCLUSIONS USP4 plays a tumor-promoting role in gastric cancer cells by regulating PKM2.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Mei Yuan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Song Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
13
|
Hou XR, Zhang ZD, Cao XL, Wang XP. Long noncoding RNAs, glucose metabolism and cancer (Review). Oncol Lett 2023; 26:340. [PMID: 37427347 PMCID: PMC10326653 DOI: 10.3892/ol.2023.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is a serious and potentially life-threatening disease, which, despite numerous advances over several decades, remains a challenge to treat that challenging to detect at an early stage or treat during the later stages. Long noncoding RNAs are >200 nucleotides long and do not possess protein-coding capacity, instead regulating cellular processes, such as proliferation, differentiation, maturation, apoptosis, metastasis, and sugar metabolism. Several studies have shown the role of lncRNAs and glucose metabolism in regulating several key glycolytic enzymes and the activity of multiple functional signaling pathways during tumor progression. Thus, it is possible to further learn about the effects of lncRNA and glycolytic metabolism on tumor diagnosis, treatment, and prognosis through a thorough investigation of the lncRNA expression profiles and glycolytic metabolism in tumors. This may provide a novel strategy for improving the management of several types of cancer.
Collapse
Affiliation(s)
- Xin-Rui Hou
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Zhen-Dong Zhang
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Lan Cao
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Ping Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
14
|
Sun W, Lei X, Lu Q, Wu Q, Ma Q, Huang D, Zhang Y. LncRNA FRMD6-AS1 promotes hepatocellular carcinoma cell migration and stemness by regulating SENP1/HIF-1α axis. Pathol Res Pract 2023; 243:154377. [PMID: 36827886 DOI: 10.1016/j.prp.2023.154377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Long non-cording RNAs (lncRNAs) drive the malignant progression of hepatocellular carcinoma (HCC), a cancer with high mortality rates but the function of FERM Domain Containing 6 antisense RNA 1 (FRMD6-AS1) in HCC has not been fully addressed. Hypoxia-inducible factors (HIFs) are transcription factors relevant to HCC under hypoxia and are regulated by SUMO-specific protease 1 (SENP1) through its deSUMOylation of HIF-1α. The current study investigated the role of FRMD6-AS1 in the regulation of SENP1-mediated deSUMOylation of HIF-1α. METHODS HUH7 and MHCC97H cells were treated with CoCl2 to mimic hypoxia in vitro and lentiviral vector-mediated FRMD6-AS1 overexpressing HCC cells were established. Wound-healing, Transwell, sphere formation assay, Western blotting analysis and animal experiments were performed. Expression of FRMD6-AS1, SENP1 mRNA and HIF-1α mRNA was assessed by RT-qPCR and of HIF-1α and SENP1 protein by Western blot. DeSUMOylation of HIF-1α was detected by immunoprecipitation. RNA immunoprecipitation with SENP1 antibody or IgG was performed to assess endogenous interactions between SENP1 and FRMD6-AS1. RESULTS FRMD6-AS1 was upregulated in HCC tissues and cells and its upregulation indicated poor prognosis for HCC patients. FRMD6-AS1 promoted HCC cells migration and stemness in vitro and also promoted tumor growth in an in vivo mouse xenograft model. Mechanistic studies showed that FRMD6-AS1 regulated the level of HIF-1α protein but not the mRNA and this effect was achieved by binding to SENP1 protein and enhancing its protease activity. Rescue experiments demonstrated the oncogenic role of the FRMD6-AS1/SENP1/ HIF-1α axis in HCC cells. CONCLUSIONS High FRMD6-AS1 expression was associated with poor prognosis of HCC patients. FRMD6-AS1 may have an oncogenic role in HCC via regulation of the SENP1/HIF-1α axis and may be a prognostic biomarker for HCC. Blockade of FRMD6-AS1 may offer a novel therapeutic approach to restrict HCC progression.
Collapse
Affiliation(s)
- Wen Sun
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Xiangxiang Lei
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Qiliang Lu
- Qingdao medical college, Qingdao university, Qingdao 266000, China
| | - Qingsong Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Qiancheng Ma
- College of Bioscience Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 8, Yikang Street, Lin'an District, Hangzhou 310014, China.
| | - Yaping Zhang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 8, Yikang Street, Lin'an District, Hangzhou 310014, China.
| |
Collapse
|
15
|
Dai T, Zhang X, Zhou X, Hu X, Huang X, Xing F, Tian H, Li Y. Long non-coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer. Clin Transl Med 2022; 12:e1088. [PMID: 36229913 PMCID: PMC9561166 DOI: 10.1002/ctm2.1088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common types of cancer worldwide, which leads to more than 10% of cancer-related deaths. Metabolism reprogramming presents as a pivotal event in cancer initiation and progression through enhancing aerobic glycolysis and anabolic metabolism. However, the underlying regulatory mechanisms in GC remain unknown. METHODS VAL was identified by bioinformatics analyses in GC. Cell-based assays and mouse model illustrate the role of VAL in GC. RNA pull-down, immunoprecipitation assay and Western blot elucidate the interaction between VAL and PKM2. Pyruvate kinase activity, ECAR and OCR were measured to validate aerobic glycolysis of GC cells. RESULTS Long non-coding RNA (lncRNA) VAL is significantly upregulated in GCs and indicates poor prognosis. Functional assays showed that VAL promotes GC malignant progression. Mechanistically, VAL strengthens the enzymatic activity of PKM2 and aerobic glycolysis of GC cells through directly binding with PKM2 to abrogate the PKM2-Parkin interaction, and to suppress Parkin-induced polyubiquitination of PKM2. In addition, glucose starvation induces VAL expression to enhance this process. CONCLUSIONS Our study provides an insight into an lncRNA-dependent regulation on the enzymatic activity of PKM2, and suggests a potential of targeting VAL or PKM2 as promising biomarkers in GC diagnosis and treatment.
Collapse
Affiliation(s)
- Ting Dai
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina,GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central HospitalAffiliated Jiangmen Hospital of Sun Yat‐sen UniversityJiangmenChina
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoxia Hu
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina
| | - Xiaodi Huang
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina
| | - Feiyue Xing
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina
| | - Han Tian
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yun Li
- Institute of Tissue Transplantation and Immunology, Department of ImmunobiologyJinan UniversityGuangzhouGuangdongChina
| |
Collapse
|